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from Wikipedia:
Definition
HX(G; M) = Extk o(Z, M).

e H?(G; M) classifies group extensions 0 -+ M — E — G — 0

o H*(G) = H*(K(G,1))

H*(Z"™) = Ao, - .., anp),

o HY(F,) = 7", H(F,) =7, H*(F,) =0 for k ¢ {0,1},

Hl(m(%g)) = 228, HO(n (%)) = H*(m(%g)) = Z, H (m(Z¢)) = 0
for k ¢ {0,1,2}.
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Kazhdan’s property (T)

Definition (cf. Delorme-Guichardet Theorem, Bekka — de la

Harpe — Valette)

G has Kazhdan's property (T), if every G-action on a Hilbert
space has a fixed point.
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Kazhdan’s property (T)

Definition (cf. Delorme-Guichardet Theorem, Bekka — de la

Harpe — Valette)

G (o-compact and locally compact) has Kazhdan'’s property (T),
if every affine isometric G-action on a real Hilbert space has a fixed
point.

Theorem (cf. Bekka — de la Harpe — Valette)

G (o-compact and locally compact) has property (T) if and only if
HY(G,m) = 0 for every orthogonal representation w of G.
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A result of Bader and Sauer

Definition (Bader — Sauer, 2023)

A discrete group G has property (T,) if H*(G;7) = 0 for every
unitary G-representation 7 without nontrivial invariant vectors and
1< k<n.
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A result of Bader and Sauer

Definition (Bader — Sauer, 2023)

A discrete group G has property (T,) if H*(G;7) = 0 for every
unitary G-representation 7 without nontrivial invariant vectors and
1< k<n.

Theorem (Bader — Sauer, 2023)
SL,(Z) has property (Tp—2).

@ our goal: show that the above result is sharp for n = 3,4
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Key observation

H*(SL,(Z); 7) = Ker m(Ay), for Ay € My k., (QG), a specific
Laplacian.

Example (representation evaluation)

G = G = (al®), M: (QG)? > (QG)*, M = [1 e a]y

1—a 2a
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Key observation

H*(SLn(Z); 7) = Ker m(Ax), for Ay € My, <k, (QG), a specific
Laplacian.

Example (representation evaluation)

G =G = (3%, M: (QG)* = (QG)*, M = H i Qaa],

-3
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Key observation

H*(SL,(Z); 7) = Ker m(Ay), for Ay € My k., (QG), a specific
Laplacian.

Example (representation evaluation)

| A

G =G = (ala®), M: (QG)* = (QG)*>, M = B fi 2aa]’
1 1 0 1
0 1 1 1 1 0
m(a) = [1 0} = (M) = 1 -1 0 2
-1 1 2 0

\,
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Representation’s construction and the main result

@ we want to define an orthogonal representation 7, of SL,(Z)
without nontrivial invariant vectors for which
H™Y(SLn(Z),7mn) # 0

° — reduction to finite group representations: we
indicate a representation 7}, of SLy(Zp,) with the above
properties and check that its extension to SL,(Z) has
nontrivial cohomology

Theorem (Briick — Hughes — Kielak — M.)

For n = 3,4 there exist an orthogonal representation 7, of SL,(Z)
without nontrivial invariant vectors such that
H"=Y(SLn(Z), mn) # 0.
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