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Introduction to cohomology of groups Motivation Hn−1(SLn(Z), π) ̸= 0

from Wikipedia:

Definition

Hk(G ;M) = ExtkZG (Z,M).

H2(G ;M) classifies group extensions 0 → M → E → G → 0

H∗(G ) ∼= H∗(K (G , 1))

Examples

H∗(Zn) ∼=
∧
⟨α1, . . . , αn⟩,

H1(Fn) ∼= Zn, H0(Fn) ∼= Z, Hk(Fn) ∼= 0 for k /∈ {0, 1},

H1(π(Σg )) ∼= Z2g , H0(π(Σg )) ∼= H2(π(Σg )) ∼= Z, Hk(π(Σg )) ∼= 0
for k /∈ {0, 1, 2}.
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Introduction to cohomology of groups Motivation Hn−1(SLn(Z), π) ̸= 0

Kazhdan’s property (T)

Definition (cf. Delorme-Guichardet Theorem, Bekka – de la
Harpe – Valette)

G has Kazhdan’s property (T), if every G -action on a Hilbert
space has a fixed point.

Theorem (cf. Bekka – de la Harpe – Valette)

G (σ-compact and locally compact) has property (T) if and only if
H1(G , π) = 0 for every orthogonal representation π of G .
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Introduction to cohomology of groups Motivation Hn−1(SLn(Z), π) ̸= 0

A result of Bader and Sauer

Definition (Bader – Sauer, 2023)

A discrete group G has property (Tn) if Hk(G ;π) = 0 for every
unitary G -representation π without nontrivial invariant vectors and
1 ≤ k ≤ n.

Theorem (Bader – Sauer, 2023)

SLn(Z) has property (Tn−2).

our goal: show that the above result is sharp
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A result of Bader and Sauer

Definition (Bader – Sauer, 2023)

A discrete group G has property (Tn) if Hk(G ;π) = 0 for every
unitary G -representation π without nontrivial invariant vectors and
1 ≤ k ≤ n.

Theorem (Bader – Sauer, 2023)

SLn(Z) has property (Tn−2).

our goal: show that the above result is sharp for n = 3, 4
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Introduction to cohomology of groups Motivation Hn−1(SLn(Z), π) ̸= 0

Key observation

Theorem

Hk(SLn(Z);π) ∼= Ker π(∆k),

Example (representation evaluation)

G = C2 = ⟨a|a2⟩,
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[
1 + a a
1 − a 2a

]
,

π(a) =

[
0 1
1 0

]
⇒ π(M) =


1 1 0 1
1 1 1 0
1 −1 0 2
−1 1 2 0
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Introduction to cohomology of groups Motivation Hn−1(SLn(Z), π) ̸= 0

Representation’s construction and the main result

we want to define an orthogonal representation πn of SLn(Z)
without nontrivial invariant vectors for which
Hn−1(SLn(Z), πn) ̸= 0

solution

Theorem (Brück – Hughes – Kielak – M.)

For n = 3, 4 there exist an orthogonal representation πn of SLn(Z)
without nontrivial invariant vectors such that
Hn−1(SLn(Z), πn) ̸= 0.
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