Spectral gaps for higher Laplacians and group cohomology

Piotr Mizerka
Institute of Mathematics of Polish Academy of Sciences

Noncommutative geometry: metric and spectral aspects, Kraków, 28 September 2022

Introduction
Motivation

Vanishing, reducibility, (T)

Motivation

point reflection

rotation

Motivation

rotation

- Generalization: symmetries must have fixed points

Motivation

- Generalization: symmetries must have fixed points
- An "isometric" fixed point property: Kazhdan's Property (T)

Motivation

- Generalization: symmetries must have fixed points
- An "isometric" fixed point property: Kazhdan's Property (T)
- (T) can be applied to construct expanders

Aims and methods

Aims and methods

- Goal: study cohomological conditions generalizing property (T)

Aims and methods

- Goal: study cohomological conditions generalizing property (T)
- The conditions: vanishing and reducibility of group cohomology

Aims and methods

- Goal: study cohomological conditions generalizing property (T)
- The conditions: vanishing and reducibility of group cohomology
- A criterion for vanishing and reducibility is provided by Laplacians

Aims and methods

- Goal: study cohomological conditions generalizing property (T)
- The conditions: vanishing and reducibility of group cohomology
- A criterion for vanishing and reducibility is provided by Laplacians
- Idea: interpretation in a group ring setting

Introduction
OO•
Outline

Outline

- Vanishing and reducibility of cohomology and property (T)

Outline

- Vanishing and reducibility of cohomology and property (T)
- Spectral gaps for higher Laplacians vs vanishing and reducibility

Outline

- Vanishing and reducibility of cohomology and property (T)
- Spectral gaps for higher Laplacians vs vanishing and reducibility
- Fox calculus

Outline

- Vanishing and reducibility of cohomology and property (T)
- Spectral gaps for higher Laplacians vs vanishing and reducibility
- Fox calculus
- Spectral gap for the first Laplacian of $\mathrm{SL}_{3}(\mathbb{Z})$

Vanishing and reducibility of cohomology and property (T)

Group cohomology

Group cohomology

- group cohomology measures e.g. group extensions

Group cohomology

- group cohomology measures e.g. group extensions
- one defines group cohomology for an arbitrary group module

Group cohomology

- group cohomology measures e.g. group extensions
- one defines group cohomology for an arbitrary group module
- there are several ways to compute group cohomology

Group cohomology

- group cohomology measures e.g. group extensions
- one defines group cohomology for an arbitrary group module
- there are several ways to compute group cohomology
- one may use e.g. projective resolutions:

$$
\begin{gathered}
\mathcal{F}=\cdots F_{n} \rightarrow \cdots \rightarrow F_{0} \rightarrow \mathbb{Z} \rightarrow 0 \\
H^{n}(G, V)=H_{n}\left(\operatorname{Hom}_{G}(\mathcal{F}, V)\right)
\end{gathered}
$$

Vanishing of cohomology and property (T)

Vanishing of cohomology and property (T)

- vanishing $=$ vanishing for every unitary representation

Vanishing of cohomology and property (T)

- vanishing $=$ vanishing for every unitary representation

Vanishing of cohomology and property (T)

- vanishing $=$ vanishing for every unitary representation

Definition

G has Kazhdan's property (T) if $H^{1}(G, \pi)=0$ for every unitary representation π of G on a Hilbert space.

Vanishing of cohomology and property (T)

- vanishing $=$ vanishing for every unitary representation

Definition

G has Kazhdan's property (T) if $H^{1}(G, \pi)=0$ for every unitary representation π of G on a Hilbert space.

- (T) \Leftrightarrow coninuous affine isometric actions on real Hilbert spaces have fixed points

Vanishing of cohomology and property (T)

- vanishing $=$ vanishing for every unitary representation

Definition

G has Kazhdan's property (T) if $H^{1}(G, \pi)=0$ for every unitary representation π of G on a Hilbert space.

- (T) \Leftrightarrow coninuous affine isometric actions on real Hilbert spaces have fixed points

Vanishing of cohomology and property (T)

- vanishing $=$ vanishing for every unitary representation

Definition

G has Kazhdan's property (T) if $H^{1}(G, \pi)=0$ for every unitary representation π of G on a Hilbert space.

- (T) \Leftrightarrow coninuous affine isometric actions on real Hilbert spaces have fixed points

Theorem (Ozawa, 2014)
$G=\left\langle s_{1}, \ldots, s_{n} \mid \cdots\right\rangle$ has property (T) iff there exists $\lambda>0$ such that $\Delta_{0}^{2}-\lambda \Delta_{0}=\sum \xi_{i}^{*} \xi_{i}\left(\Delta_{0}=d_{0}^{*} d_{0}=\sum_{i=1}^{n}\left(1-s_{i}\right)^{*}\left(1-s_{i}\right)\right)$.

Reducibility of cohomology

Reducibility of cohomology

- Bader and Nowak, 2020

Reducibility of cohomology

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces

Reducibility of cohomology

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose H^{*} is given by

$$
\cdots \rightarrow C_{i-1} \xrightarrow{d_{i}} C_{i} \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots
$$

Reducibility of cohomology

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose H^{*} is given by

$$
\cdots \rightarrow C_{i-1} \xrightarrow{d_{i}} C_{i} \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots
$$

Reducibility of cohomology

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose H^{*} is given by

$$
\cdots \rightarrow C_{i-1} \xrightarrow{d_{i}} C_{i} \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots
$$

Definition

The ith reduced cohomology is defined by $\bar{H}^{i}=\operatorname{Ker} d_{i} / \overline{\operatorname{lm} d_{i-1}}$. We say that the i th cohomology is reduced if H^{i} coincides with \bar{H}^{i}.

Reducibility vs vanishing

Reducibility vs vanishing

- reducibility $=$ reducibility for every unitary representation

Reducibility vs vanishing

- reducibility $=$ reducibility for every unitary representation
- Obviously, vanishing implies reducibility

Reducibility vs vanishing

- reducibility $=$ reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one

Reducibility vs vanishing

- reducibility $=$ reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

Reducibility vs vanishing

- reducibility $=$ reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

Reducibility vs vanishing

- reducibility $=$ reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

Proposition (Dymara-Januszkiewicz)

For any $i \geq 2$ there exists a group G_{i} with reduced H^{i} and $H^{i}\left(G, \rho_{0}\right) \neq 0$ for some unitary representation ρ_{0}.

Spectral gaps for higher Laplacians vs vanishing and reducibility

Sums of squares (SOS)

Sums of squares (SOS)

- *-involution in $\mathbb{R} G: \xi^{*}=\sum_{g \in G} \xi_{g} g^{-1}$

Sums of squares (SOS)

- *-involution in $\mathbb{R} G: \xi^{*}=\sum_{g \in G} \xi_{g} g^{-1}$
- *-involution in $M_{m, n}(\mathbb{R} G):\left(M^{*}\right)_{i, j}=M_{j, i}^{*}$

Sums of squares (SOS)

- *-involution in $\mathbb{R} G: \xi^{*}=\sum_{g \in G} \xi_{g} g^{-1}$
- *-involution in $M_{m, n}(\mathbb{R} G):\left(M^{*}\right)_{i, j}=M_{j, i}^{*}$

Sums of squares (SOS)

- *-involution in $\mathbb{R} G: \xi^{*}=\sum_{g \in G} \xi_{g} g^{-1}$
- *-involution in $M_{m, n}(\mathbb{R} G):\left(M^{*}\right)_{i, j}=M_{j, i}^{*}$

Definition

$M \in M_{n}(\mathbb{R} G)$ is an SOS if there exist M_{1}, \ldots, M_{l} such that

$$
M=M_{1}^{*} M_{1}+\cdots+M_{l}^{*} M_{l} .
$$

Algebraic condition

Algebraic condition

- Suppose we compute cohomology of G from

$$
\cdots \rightarrow(\mathbb{Z} G)^{k_{i-1}} \xrightarrow{d_{i-1}}(\mathbb{Z} G)^{k_{i}} \xrightarrow{d_{i}}(\mathbb{Z} G)^{k_{i+1}} \rightarrow \cdots
$$

Algebraic condition

- Suppose we compute cohomology of G from

$$
\cdots \rightarrow(\mathbb{Z} G)^{k_{i-1}} \xrightarrow{d_{i-1}}(\mathbb{Z} G)^{k_{i}} \xrightarrow{d_{i}}(\mathbb{Z} G)^{k_{i+1}} \rightarrow \cdots
$$

- $\Delta_{i}=d_{i}^{*} d_{i}+d_{i-1} d_{i-1}^{*} \in M_{k_{i}}(\mathbb{R} G)$

Algebraic condition

- Suppose we compute cohomology of G from

$$
\cdots \rightarrow(\mathbb{Z} G)^{k_{i-1}} \xrightarrow{d_{i-1}}(\mathbb{Z} G)^{k_{i}} \xrightarrow{d_{i}}(\mathbb{Z} G)^{k_{i+1}} \rightarrow \cdots
$$

- $\Delta_{i}=d_{i}^{*} d_{i}+d_{i-1} d_{i-1}^{*} \in M_{k_{i}}(\mathbb{R} G)$

Algebraic condition

- Suppose we compute cohomology of G from

$$
\cdots \rightarrow(\mathbb{Z} G)^{k_{i-1}} \xrightarrow{d_{i-1}}(\mathbb{Z} G)^{k_{i}} \xrightarrow{d_{i}}(\mathbb{Z} G)^{k_{i+1}} \rightarrow \cdots
$$

- $\Delta_{i}=d_{i}^{*} d_{i}+d_{i-1} d_{i-1}^{*} \in M_{k_{i}}(\mathbb{R} G)$

Theorem (Bader and Nowak, 2020)
TFAE for G and $i \geq 1$:

Algebraic condition

- Suppose we compute cohomology of G from

$$
\cdots \rightarrow(\mathbb{Z} G)^{k_{i-1}} \xrightarrow{d_{i-1}}(\mathbb{Z} G)^{k_{i}} \xrightarrow{d_{i}}(\mathbb{Z} G)^{k_{i+1}} \rightarrow \cdots
$$

- $\Delta_{i}=d_{i}^{*} d_{i}+d_{i-1} d_{i-1}^{*} \in M_{k_{i}}(\mathbb{R} G)$

Theorem (Bader and Nowak, 2020)
TFAE for G and $i \geq 1$:

- H^{i} vanish and H^{i+1} are reduced.

Algebraic condition

- Suppose we compute cohomology of G from

$$
\cdots \rightarrow(\mathbb{Z} G)^{k_{i-1}} \xrightarrow{d_{i-1}}(\mathbb{Z} G)^{k_{i}} \xrightarrow{d_{i}}(\mathbb{Z} G)^{k_{i+1}} \rightarrow \cdots
$$

- $\Delta_{i}=d_{i}^{*} d_{i}+d_{i-1} d_{i-1}^{*} \in M_{k_{i}}(\mathbb{R} G)$

Theorem (Bader and Nowak, 2020)

TFAE for G and $i \geq 1$:

- H^{i} vanish and H^{i+1} are reduced.
- $\Delta_{i}-\lambda I=$ SOS for some $\lambda>0$.

Fox calculus

Definition of Fox derivatives

Definition of Fox derivatives

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$

Definition of Fox derivatives

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$

Definition of Fox derivatives

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$

Definition (Fox, '50s)

The differentials $\frac{\partial}{\partial s_{j}}: \mathbb{R} F_{n} \rightarrow \mathbb{R} G, F_{n}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ are defined by:

Definition of Fox derivatives

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$

Definition (Fox, '50s)

The differentials $\frac{\partial}{\partial s_{j}}: \mathbb{R} F_{n} \rightarrow \mathbb{R} G, F_{n}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ are defined by:

- $\frac{\partial s_{i}}{\partial s_{j}}=\delta_{i, j}, \frac{\partial s_{j}^{-1}}{\partial s_{j}}=-s_{j}^{-1}$, and $\frac{\partial s_{s_{1}}^{ \pm 1}}{\partial s_{j}}=0$ for $i \neq j$

Definition of Fox derivatives

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$

Definition (Fox, '50s)

The differentials $\frac{\partial}{\partial s_{j}}: \mathbb{R} F_{n} \rightarrow \mathbb{R} G, F_{n}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ are defined by:

- $\frac{\partial s_{i}}{\partial s_{j}}=\delta_{i, j}, \frac{\partial s_{j}^{-1}}{\partial s_{j}}=-s_{j}^{-1}$, and $\frac{\partial s_{i}^{ \pm 1}}{\partial s_{j}}=0$ for $i \neq j$
- product rule: $\frac{\partial(u v)}{\partial s_{j}}=\frac{\partial u}{\partial s_{j}}+u \frac{\partial v}{\partial s_{j}}$.

Definition of Fox derivatives

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$

Definition (Fox, '50s)

The differentials $\frac{\partial}{\partial s_{j}}: \mathbb{R} F_{n} \rightarrow \mathbb{R} G, F_{n}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ are defined by:

- $\frac{\partial s_{i}}{\partial s_{j}}=\delta_{i, j}, \frac{\partial s_{j}^{-1}}{\partial s_{j}}=-s_{j}^{-1}$, and $\frac{\partial s_{i}^{ \pm 1}}{\partial s_{j}}=0$ for $i \neq j$
- product rule: $\frac{\partial(u v)}{\partial s_{j}}=\frac{\partial u}{\partial s_{j}}+u \frac{\partial v}{\partial s_{j}}$.

Definition of Fox derivatives

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$

Definition (Fox, '50s)

The differentials $\frac{\partial}{\partial s_{j}}: \mathbb{R} F_{n} \rightarrow \mathbb{R} G, F_{n}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ are defined by:

- $\frac{\partial s_{i}}{\partial s_{j}}=\delta_{i, j}, \frac{\partial s_{j}^{-1}}{\partial s_{j}}=-s_{j}^{-1}$, and $\frac{\partial s_{i}^{ \pm 1}}{\partial s_{j}}=0$ for $i \neq j$
- product rule: $\frac{\partial(u v)}{\partial s_{j}}=\frac{\partial u}{\partial s_{j}}+u \frac{\partial v}{\partial s_{j}}$.

Definition (Fox, '50s)

The Fox derivatives are the elements $\frac{\partial r_{i}}{\partial s_{j}} \in \mathbb{R} G$.

Computing cohomology

Computing cohomology

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$

Computing cohomology

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$
- $d_{0}=\left[\begin{array}{c}1-s_{i} \\ \vdots \\ 1-s_{n}\end{array}\right]$

Computing cohomology

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$
- $d_{0}=\left[\begin{array}{c}1-s_{i} \\ \vdots \\ 1-s_{n}\end{array}\right]$
- Jacobian: $d_{1}=\left[\frac{\partial r_{i}}{\partial s_{j}}\right]$

Computing cohomology

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$
- $d_{0}=\left[\begin{array}{c}1-s_{i} \\ \vdots \\ 1-s_{n}\end{array}\right]$
- Jacobian: $d_{1}=\left[\frac{\partial r_{i}}{\partial s_{j}}\right]$
- How to compute $H^{*}(G, V), V=G$-module?

Computing cohomology

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$
- $d_{0}=\left[\begin{array}{c}1-s_{i} \\ \vdots \\ 1-s_{n}\end{array}\right]$
- Jacobian: $d_{1}=\left[\frac{\partial r_{i}}{\partial s_{j}}\right]$
- How to compute $H^{*}(G, V), V=G$-module?

Computing cohomology

- $G=\left\langle s_{1}, \ldots, s_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$
- $d_{0}=\left[\begin{array}{c}1-s_{i} \\ \vdots \\ 1-s_{n}\end{array}\right]$
- Jacobian: $d_{1}=\left[\frac{\partial r_{i}}{\partial s_{j}}\right]$
- How to compute $H^{*}(G, V), V=G$-module?

Theorem (Lyndon, '50s)

The cohomology $H^{*}(G, V)$ is the cohomology of the following complex:

$$
0 \rightarrow V \xrightarrow{d_{0}} V^{n} \xrightarrow{d_{1}} V^{m} \rightarrow \cdots .
$$

Geometric interpretation

Geometric interpretation

- $G=\left\langle a, b \mid a^{2} b a^{-1} b\right\rangle$

Geometric interpretation

- $G=\left\langle a, b \mid a^{2} b a^{-1} b\right\rangle$
- Presentation complex - a 2-skeleton of $K(G, 1)$:

Geometric interpretation

- $G=\left\langle a, b \mid a^{2} b a^{-1} b\right\rangle$
- Presentation complex - a 2-skeleton of $K(G, 1)$:

$\left.00 \rightarrow V \xrightarrow{\left[\begin{array}{l}1-a \\ 1-b\end{array}\right]} V^{2} \xrightarrow{\left[1+a-a^{2} b a^{-1}\right.} \quad a^{2}+a^{2} b a^{-1}\right]=d_{1} ~ V$

Spectral gap for the first Laplacian of $\mathrm{SL}_{3}(\mathbb{Z})$

(joint work with M. Kaluba and P. Nowak)

SDP problem for matrix SOS

SDP problem for matrix SOS

- When $M \in M_{n}(\mathbb{R} G)$ is an SOS?

SDP problem for matrix SOS

- When $M \in M_{n}(\mathbb{R} G)$ is an SOS?
- $\mathrm{y}=I_{n} \otimes \mathrm{x} \in M_{m n, n}(\mathbb{R} G)$, $\mathrm{x}-$ column with half-basis for M

SDP problem for matrix SOS

- When $M \in M_{n}(\mathbb{R} G)$ is an SOS?
- $\mathrm{y}=I_{n} \otimes \mathrm{x} \in M_{m n, n}(\mathbb{R} G)$, $\mathrm{x}-$ column with half-basis for M

SDP problem for matrix SOS

- When $M \in M_{n}(\mathbb{R} G)$ is an SOS?
- $\mathrm{y}=I_{n} \otimes \mathrm{x} \in M_{m n, n}(\mathbb{R} G), \mathrm{x}-$ column with half-basis for M

Lemma

$M=S O S$ iff there exists $P \succeq 0$ such that $M=y^{*} P \mathrm{y}$.

SDP problem for matrix SOS

- When $M \in M_{n}(\mathbb{R} G)$ is an SOS?
- $\mathrm{y}=I_{n} \otimes \mathrm{x} \in M_{m n, n}(\mathbb{R} G), \mathrm{x}-$ column with half-basis for M

Lemma

$M=S O S$ iff there exists $P \succeq 0$ such that $M=y^{*} P_{\mathrm{y}}$.

- Convex optimization for $M=\Delta_{1}-\lambda /$:

$$
\begin{aligned}
\text { maximize: } & \lambda \\
\text { subject to: } & M_{i, j}(g)=\left\langle\delta_{i, j} \otimes \delta_{g}, P\right\rangle, \\
& P \succeq 0 .
\end{aligned}
$$

Reducibility of the second cohomology for $\mathrm{SL}_{3}(\mathbb{Z})$

Reducibility of the second cohomology for $\mathrm{SL}_{3}(\mathbb{Z})$

- We use the following presentation of $\mathrm{SL}_{3}(\mathbb{Z})$:

$$
\begin{aligned}
\mathrm{SL}_{3}(\mathbb{Z})= & \left\langle\left\{E_{i, j}\right\}\right|\left[E_{i, j}, E_{i, k}\right],\left[E_{i, j}, E_{j, k}\right] E_{i, k}^{-1}, \\
& \left.\left(E_{1,2} E_{2,1}^{-1} E_{1,2}\right)^{4}\right\rangle
\end{aligned}
$$

Reducibility of the second cohomology for $\mathrm{SL}_{3}(\mathbb{Z})$

- We use the following presentation of $\mathrm{SL}_{3}(\mathbb{Z})$:

$$
\begin{aligned}
\mathrm{SL}_{3}(\mathbb{Z})= & \left\langle\left\{E_{i, j}\right\}\right|\left[E_{i, j}, E_{i, k}\right],\left[E_{i, j}, E_{j, k}\right] E_{i, k}^{-1}, \\
& \left.\left(E_{1,2} E_{2,1}^{-1} E_{1,2}\right)^{4}\right\rangle
\end{aligned}
$$

Reducibility of the second cohomology for $\mathrm{SL}_{3}(\mathbb{Z})$

- We use the following presentation of $\mathrm{SL}_{3}(\mathbb{Z})$:

$$
\begin{aligned}
\mathrm{SL}_{3}(\mathbb{Z})= & \left\langle\left\{E_{i, j}\right\}\right|\left[E_{i, j}, E_{i, k}\right],\left[E_{i, j}, E_{j, k}\right] E_{i, k}^{-1}, \\
& \left.\left(E_{1,2} E_{2,1}^{-1} E_{1,2}\right)^{4}\right\rangle
\end{aligned}
$$

Theorem (Kaluba, M., Nowak)
For $\mathrm{SL}_{3}(\mathbb{Z})$ the expression $\Delta_{1}-\lambda /$ is an SOS for any $\lambda \leq 0.32$.

Reducibility of the second cohomology for $\mathrm{SL}_{3}(\mathbb{Z})$

- We use the following presentation of $\mathrm{SL}_{3}(\mathbb{Z})$:

$$
\begin{aligned}
\mathrm{SL}_{3}(\mathbb{Z})= & \left\langle\left\{E_{i, j}\right\}\right|\left[E_{i, j}, E_{i, k}\right],\left[E_{i, j}, E_{j, k}\right] E_{i, k}^{-1}, \\
& \left.\left(E_{1,2} E_{2,1}^{-1} E_{1,2}\right)^{4}\right\rangle
\end{aligned}
$$

Theorem (Kaluba, M., Nowak)
For $\mathrm{SL}_{3}(\mathbb{Z})$ the expression $\Delta_{1}-\lambda /$ is an SOS for any $\lambda \leq 0.32$.

Reducibility of the second cohomology for $\mathrm{SL}_{3}(\mathbb{Z})$

- We use the following presentation of $\mathrm{SL}_{3}(\mathbb{Z})$:

$$
\begin{aligned}
\mathrm{SL}_{3}(\mathbb{Z})= & \left\langle\left\{E_{i, j}\right\}\right|\left[E_{i, j}, E_{i, k}\right],\left[E_{i, j}, E_{j, k}\right] E_{i, k}^{-1}, \\
& \left.\left(E_{1,2} E_{2,1}^{-1} E_{1,2}\right)^{4}\right\rangle
\end{aligned}
$$

Theorem (Kaluba, M., Nowak)
For $\mathrm{SL}_{3}(\mathbb{Z})$ the expression $\Delta_{1}-\lambda /$ is an SOS for any $\lambda \leq 0.32$.

Corollary

The first cohomology of $\mathrm{SL}_{3}(\mathbb{Z})$ vanishes, and the second is reduced.

A comment on expanders

A comment on expanders

- $G=(V, E)$

A comment on expanders

- $G=(V, E)$
- Cheeger constant: $h(G)=\inf _{1 \leq \# A \leq \# V / 2} \frac{\# E(A, V \backslash A)}{\# A}$

A comment on expanders

- $G=(V, E)$
- Cheeger constant: $h(G)=\inf _{1 \leq \# A \leq \# V / 2} \frac{\# E(A, V \backslash A)}{\# A}$
- Expander family: $\left|G_{n}\right| \rightarrow \infty$ s.t. $\lim _{\inf }^{n \rightarrow \infty} \boldsymbol{h} \frac{h\left(G_{n}\right)}{\operatorname{deg}\left(G_{n}\right)}>0$

A comment on expanders

- $G=(V, E)$
- Cheeger constant: $h(G)=\inf _{1 \leq \# A \leq \# V / 2} \frac{\# E(A, V \backslash A)}{\# A}$
- Expander family: $\left|G_{n}\right| \rightarrow \infty$ s.t. $\lim \inf _{n \rightarrow \infty} \frac{h\left(G_{n}\right)}{\operatorname{deg}\left(G_{n}\right)}>0$
- (T) yields expanders: $G_{n}:=G / N_{n}, G$ has (T)

A comment on expanders

- $G=(V, E)$
- Cheeger constant: $h(G)=\inf _{1 \leq \# A \leq \# V / 2} \frac{\# E(A, V \backslash A)}{\# A}$
- Expander family: $\left|G_{n}\right| \rightarrow \infty$ s.t. $\lim _{\inf }^{n \rightarrow \infty}$ $\frac{h\left(G_{n}\right)}{\operatorname{deg}\left(G_{n}\right)}>0$
- (T) yields expanders: $G_{n}:=G / N_{n}, G$ has (T)
- Expanders generalize to higher dimensions (Lubotzky)

A comment on expanders

- $G=(V, E)$
- Cheeger constant: $h(G)=\inf _{1 \leq \# A \leq \# V / 2} \frac{\# E(A, V \backslash A)}{\# A}$
- Expander family: $\left|G_{n}\right| \rightarrow \infty$ s.t. $\lim _{\inf }^{n \rightarrow \infty}$ $\frac{h\left(G_{n}\right)}{\operatorname{deg}\left(G_{n}\right)}>0$
- (T) yields expanders: $G_{n}:=G / N_{n}, G$ has (T)
- Expanders generalize to higher dimensions (Lubotzky)
- $\mathrm{SL}_{3}(\mathbb{Z})$: spectral gap \Rightarrow " CW -expanders"

Thank you for attention!

