Introduction Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox c 0000
---	-------------------------	---------------

alculus

Spectral gaps for higher Laplacians and group cohomology

Piotr Mizerka

Institute of Mathematics of Polish Academy of Sciences

Noncommutative geometry: metric and spectral aspects, Kraków, 28 September 2022

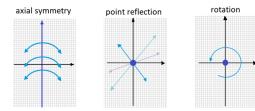
Introduction ●○○	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Motivatio	on			

Introd	uction
000	

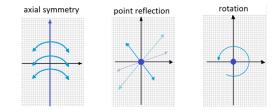
Vanishing, reducibility, (T)

Laplacian spectral gaps

Motivation

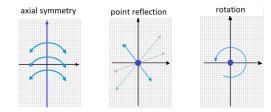


Introduction ●○○	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Motivatio	on			



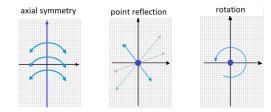
• Generalization: symmetries must have fixed points

Introduction ●○○	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Motivatio	on			



- Generalization: symmetries must have fixed points
- An "isometric" fixed point property: Kazhdan's Property (T)

Introduction ●○○	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) 00000
Motivatio	on			



- Generalization: symmetries must have fixed points
- An "isometric" fixed point property: Kazhdan's Property (T)
- (T) can be applied to construct expanders

Introduction ○●○	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) 00000

Aims and methods

Aims and methods	Introduction ○●○	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
	Aims and	methods			

 $\bullet\,$ Goal: study cohomological conditions generalizing property (T)

Aims and methods	Introduction ○●○	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
	Aims and	methods			

- Goal: study cohomological conditions generalizing property (T)
- The conditions: *vanishing* and *reducibility* of group cohomology

	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) 00000
Aims and	methods			

- Goal: study cohomological conditions generalizing property (T)
- The conditions: *vanishing* and *reducibility* of group cohomology
- A criterion for vanishing and reducibility is provided by *Laplacians*

Introduction ○●○	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Aims and	methods			

- Goal: study cohomological conditions generalizing property (T)
- The conditions: *vanishing* and *reducibility* of group cohomology
- A criterion for vanishing and reducibility is provided by *Laplacians*
- Idea: interpretation in a group ring setting

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Outline				

Introduction ○○●	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Outline				

 \bullet Vanishing and reducibility of cohomology and property (T)

Introduction ○○●	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Outline				

- Vanishing and reducibility of cohomology and property (T)
- Spectral gaps for higher Laplacians vs vanishing and reducibility

Introduction ○○●	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Outline				

- \bullet Vanishing and reducibility of cohomology and property (T)
- Spectral gaps for higher Laplacians vs vanishing and reducibility

• Fox calculus

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Outline				

- \bullet Vanishing and reducibility of cohomology and property (T)
- Spectral gaps for higher Laplacians vs vanishing and reducibility

• Fox calculus

• Spectral gap for the first Laplacian of $\mathsf{SL}_3(\mathbb{Z})$

Vanishing and reducibility of cohomology and property (T)

Introduction	Vanishing, reducibility, (T) ○●○○○	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) 00000
Group c	ohomology			

Introduction	Vanishing, reducibility, (T) ○●○○○	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Group c	ohomology			

• group cohomology measures e.g. group extensions

Introduction	Vanishing, reducibility, (T) ○●○○○	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Group o	cohomology			

- group cohomology measures e.g. group extensions
- one defines group cohomology for an arbitrary group module

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Group o	cohomology			

- group cohomology measures e.g. group extensions
- one defines group cohomology for an arbitrary group module
- there are several ways to compute group cohomology

Introduction	Vanishing, reducibility, (T) ○●○○○	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Group o	cohomology			

- group cohomology measures e.g. group extensions
- one defines group cohomology for an arbitrary group module
- there are several ways to compute group cohomology
- one may use e.g. projective resolutions:

$$\mathcal{F} = \cdots F_n \to \cdots \to F_0 \to \mathbb{Z} \to 0,$$

 $H^n(G, V) = H_n(\operatorname{Hom}_G(\mathcal{F}, V))$

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	$SL_3(\mathbb{Z})$
Vanishin	g of cohomolog	y and property	y (T)	

Definition

G has Kazhdan's property (T) if $H^1(G, \pi) = 0$ for every unitary representation π of *G* on a Hilbert space.

Definition

G has Kazhdan's property (T) if $H^1(G, \pi) = 0$ for every unitary representation π of *G* on a Hilbert space.

 (T) ⇔ coninuous affine isometric actions on real Hilbert spaces have fixed points

Definition

G has Kazhdan's property (T) if $H^1(G, \pi) = 0$ for every unitary representation π of *G* on a Hilbert space.

 (T) ⇔ coninuous affine isometric actions on real Hilbert spaces have fixed points

Definition

G has Kazhdan's property (T) if $H^1(G, \pi) = 0$ for every unitary representation π of *G* on a Hilbert space.

 (T) ⇔ coninuous affine isometric actions on real Hilbert spaces have fixed points

Theorem (Ozawa, 2014)

 $G = \langle s_1, \ldots, s_n | \cdots \rangle$ has property (T) iff there exists $\lambda > 0$ such that $\Delta_0^2 - \lambda \Delta_0 = \sum \xi_i^* \xi_i$ ($\Delta_0 = d_0^* d_0 = \sum_{i=1}^n (1 - s_i)^* (1 - s_i)$).

Introduction	Vanishing, reducibility, (T) ०००●०	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Reducibil	ity of cohomolo	gу		

Introduction	Vanishing, reducibility, (T) 00000	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Reducibil	ity of cohomolo	gу		

• Bader and Nowak, 2020

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000		
Reducibility of cohomology						

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces

Introduction	Vanishing, reducibility, (T) ○○○●○	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000		
Reducibility of cohomology						

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose H^* is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

Introduction	Vanishing, reducibility, (T) ○○○●○	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000		
Reducibility of cohomology						

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose H^* is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

Introduction	Vanishing, reducibility, (T) ०००●०	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000		
Reducibility of cohomology						

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose *H*^{*} is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

Definition

The *i*th reduced cohomology is defined by $\overline{H}^{i} = \text{Ker } d_{i}/\overline{\text{Im } d_{i-1}}$. We say that the *i*th cohomology is reduced if H^{i} coincides with \overline{H}^{i} .

Introduction	Vanishing, reducibility, (T) 0000●	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Reducibility vs vanishing				

Introduction	Vanishing, reducibility, (T) 0000	Laplacian spectral gaps	Fox calculus	$SL_3(\mathbb{Z})$
Reducibil	ity vs vanishing			

 \bullet reducibility = reducibility for every unitary representation

Introduction	Vanishing, reducibility, (T) 0000●	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Reducibil	ity vs vanishing			

- ${\ensuremath{\bullet}}$ reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility

Introduction	Vanishing, reducibility, (T) ○○○○●	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Reducibil	ity vs vanishing			

- \bullet reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one

Introduction	Vanishing, reducibility, (T) ○○○○●	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Reducibil	ity vs vanishing			

- \bullet reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

Introduction	Vanishing, reducibility, (T) ○○○○●	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Reducibil	ity vs vanishing			

- \bullet reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

Introduction	Vanishing, reducibility, (T) 0000●	Laplacian spectral gaps	Fox calculus	SL₃(ℤ) 00000
Reducibil	ity vs vanishing			

- ${\ensuremath{\bullet}}$ reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

Proposition (Dymara-Januszkiewicz)

For any $i \ge 2$ there exists a group G_i with reduced H^i and $H^i(G, \rho_0) \ne 0$ for some unitary representation ρ_0 .

Spectral gaps for higher Laplacians vs vanishing and reducibility

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○●○○	Fox calculus	SL₃(ℤ) 00000
Sums of	squares (SOS)			

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○●○○	Fox calculus	SL ₃ (ℤ) 00000
Sums of	squares (SOS)			

• *-involution in
$$\mathbb{R}G$$
: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○●○○	Fox calculus	SL₃(ℤ) 00000
Sums of	squares (SOS)			

- *-involution in $\mathbb{R}G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- *-involution in $M_{m,n}(\mathbb{R}G)$: $(M^*)_{i,j} = M^*_{j,i}$

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○●○○	Fox calculus	SL₃(ℤ) 00000
Sums of	squares (SOS)			

- *-involution in $\mathbb{R}G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- *-involution in $M_{m,n}(\mathbb{R}G)$: $(M^*)_{i,j} = M^*_{j,i}$

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○●○○	Fox calculus	SL₃(ℤ) 00000
Sums of	squares (SOS)			

- *-involution in $\mathbb{R}G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- *-involution in $M_{m,n}(\mathbb{R}G)$: $(M^*)_{i,j} = M^*_{j,i}$

Definition

 $M \in M_n(\mathbb{R}G)$ is an SOS if there exist M_1, \ldots, M_l such that

 $M = M_1^* M_1 + \cdots + M_l^* M_l.$

	00000	0000	0000	00000			
Algebraic condition							

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○○●○	Fox calculus	$SL_3(\mathbb{Z})$
Algebraic	condition			

$$\cdots
ightarrow (\mathbb{Z}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{Z}G)^{k_i} \xrightarrow{d_i} (\mathbb{Z}G)^{k_{i+1}}
ightarrow \cdots$$

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○○●○	Fox calculus	$SL_3(\mathbb{Z})$
Algebraic	condition			

$$\cdots
ightarrow (\mathbb{Z}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{Z}G)^{k_i} \xrightarrow{d_i} (\mathbb{Z}G)^{k_{i+1}}
ightarrow \cdots$$

•
$$\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○○●○	Fox calculus	$SL_3(\mathbb{Z})$
Algebraic	condition			

$$\cdots
ightarrow (\mathbb{Z}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{Z}G)^{k_i} \xrightarrow{d_i} (\mathbb{Z}G)^{k_{i+1}}
ightarrow \cdots$$

•
$$\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○○●○	Fox calculus	SL₃(ℤ) 00000
Algebraic	condition			

$$\cdots
ightarrow (\mathbb{Z}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{Z}G)^{k_i} \xrightarrow{d_i} (\mathbb{Z}G)^{k_{i+1}}
ightarrow \cdots$$

•
$$\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

Theorem (Bader and Nowak, 2020) TFAE for G and $i \ge 1$:

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○○●○	Fox calculus	SL₃(ℤ) 00000
Algebraic	c condition			

$$\cdots
ightarrow (\mathbb{Z}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{Z}G)^{k_i} \xrightarrow{d_i} (\mathbb{Z}G)^{k_{i+1}}
ightarrow \cdots$$

•
$$\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

Theorem (Bader and Nowak, 2020)

TFAE for G and $i \ge 1$: • H^i vanish and H^{i+1} are reduced.

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps ○○●○	Fox calculus	SL₃(ℤ) 00000
Algebraic	c condition			

$$\cdots
ightarrow (\mathbb{Z}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{Z}G)^{k_i} \xrightarrow{d_i} (\mathbb{Z}G)^{k_{i+1}}
ightarrow \cdots$$

•
$$\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

Theorem (Bader and Nowak, 2020)

TFAE for G and $i \ge 1$:

• H^i vanish and \overline{H}^{i+1} are reduced.

• $\Delta_i - \lambda I = \text{SOS}$ for some $\lambda > 0$.

Introd	uctior	

How to get the matrices d_i ?

Fox calculus

Introc	luctio	n
000		

Laplacian spectral gaps

SL₃(ℤ) 00000

Definition of Fox derivatives

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus ○●○○	SL₃(ℤ) 00000
Definition	ı of Fox derivati	ves		

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus ○●○○	SL₃(ℤ) 00000
Definition	ı of Fox derivati	ves		

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Introd	luc	ti	01	1
000				

Laplacian spectral gaps

Definition of Fox derivatives

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Definition (Fox, '50s) The differentials $\frac{\partial}{\partial s_j}$: $\mathbb{R}F_n \to \mathbb{R}G$, $F_n = \langle s_1, \dots, s_n \rangle$ are defined by:

Introd	uct	io	n
000			

Laplacian spectral gaps

Definition of Fox derivatives

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Definition (Fox, '50s)

The differentials $\frac{\partial}{\partial s_i} : \mathbb{R}F_n \to \mathbb{R}G$, $F_n = \langle s_1, \dots, s_n \rangle$ are defined by:

•
$$\frac{\partial s_i}{\partial s_j} = \delta_{i,j}$$
, $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$, and $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$ for $i \neq j$

Introd	uct	io	n
000			

Laplacian spectral gaps

Definition of Fox derivatives

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Definition (Fox, '50s)

The differentials $\frac{\partial}{\partial s_i} : \mathbb{R}F_n \to \mathbb{R}G$, $F_n = \langle s_1, \dots, s_n \rangle$ are defined by:

•
$$\frac{\partial s_i}{\partial s_j} = \delta_{i,j}$$
, $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$, and $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$ for $i \neq j$

• product rule:
$$\frac{\partial(uv)}{\partial s_j} = \frac{\partial u}{\partial s_j} + u \frac{\partial v}{\partial s_j}$$

Introd	uct	io	n
000			

Laplacian spectral gaps

Definition of Fox derivatives

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Definition (Fox, '50s)

The differentials $\frac{\partial}{\partial s_i} : \mathbb{R}F_n \to \mathbb{R}G$, $F_n = \langle s_1, \dots, s_n \rangle$ are defined by:

•
$$\frac{\partial s_i}{\partial s_j} = \delta_{i,j}$$
, $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$, and $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$ for $i \neq j$

• product rule:
$$\frac{\partial(uv)}{\partial s_j} = \frac{\partial u}{\partial s_j} + u \frac{\partial v}{\partial s_j}$$

Introd	uction

Laplacian spectral gaps

Definition of Fox derivatives

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Definition (Fox, '50s)

The differentials $\frac{\partial}{\partial s_i} : \mathbb{R}F_n \to \mathbb{R}G$, $F_n = \langle s_1, \dots, s_n \rangle$ are defined by:

•
$$\frac{\partial s_i}{\partial s_j} = \delta_{i,j}$$
, $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$, and $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$ for $i \neq j$

• product rule:
$$\frac{\partial(uv)}{\partial s_j} = \frac{\partial u}{\partial s_j} + u \frac{\partial v}{\partial s_j}$$

Definition (Fox, '50s)

The Fox derivatives are the elements $\frac{\partial r_i}{\partial s_i} \in \mathbb{R}G$.

Introd	uct	io	n
000			

Laplacian spectral gaps

SL₃(ℤ) 00000

Computing cohomology

Introduction 000	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus ○○●○	SL₃(ℤ) 00000
Comput	ing cohomology			

• $G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus ○○●○	SL₃(ℤ) 00000
Comput	ing cohomology	,		
• G	$=\langle s_1,\ldots,s_n r_1,\ldots,r_n\rangle$	$_{n}\rangle$		
• d ₀	$\mathbf{s} = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$			

oco	Vanishing, reducibility, (1)	Laplacian spectral gaps	Fox calculus 00€0	SL ₃ (Z) 00000
Computi	ing cohomology			
• G :	$=\langle s_1,\ldots,s_n r_1,\ldots,r_n$	n>		
• d ₀	$= \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$			

• Jacobian: $d_1 = \begin{bmatrix} \frac{\partial r_i}{\partial s_j} \end{bmatrix}$

Introduction	Vanishing, reducibility, (1)	Cooo	Fox calculus ○○●○	SL3(ℤ) 00000
Computi	ng cohomology			
• G =	$\langle s_1,\ldots,s_n r_1,\ldots,r_m\rangle$,		

•
$$d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

• Jacobian: $d_1 = \begin{bmatrix} \frac{\partial r_i}{\partial s_j} \end{bmatrix}$

- -

• How to compute $H^*(G, V)$, V = G-module?

Introduction	Vanishing, reducibility, (1)	Cooo	Fox calculus ○○●○	SL3(ℤ) 00000
Computi	ng cohomology			
• G =	$\langle s_1,\ldots,s_n r_1,\ldots,r_m\rangle$,		

•
$$d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

• Jacobian: $d_1 = \begin{bmatrix} \frac{\partial r_i}{\partial s_j} \end{bmatrix}$

- -

• How to compute $H^*(G, V)$, V = G-module?

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus ○○●○	SL₃(ℤ) 00000
Comput	ing cohomology			
• G	$=\langle s_1,\ldots,s_n r_1,\ldots,r_n\rangle$	$_{n}\rangle$		
	F4 7			

•
$$d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

• Jacobian: $d_1 = \begin{bmatrix} \frac{\partial r_i}{\partial s_j} \end{bmatrix}$

• How to compute $H^*(G, V)$, V = G-module?

Theorem (Lyndon, '50s)

The cohomology $H^*(G, V)$ is the cohomology of the following complex:

$$0 \rightarrow V \xrightarrow{d_0} V^n \xrightarrow{d_1} V^m \rightarrow \cdots$$

Introd	luc	tio	n

Vanishing, reducibility, (T)

Laplacian spectral gaps

Fox calculus

 $SL_3(\mathbb{Z})$

Geometric interpretation

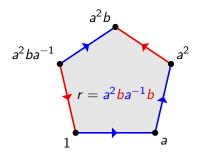
Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus ○○○●	SL₃(ℤ) 00000
Geometri	c interpretation			

•
$$G = \langle a, b | a^2 b a^{-1} b \rangle$$

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus ○○○●	SL₃(ℤ) 00000
Geomet	ric interpretatio	n		

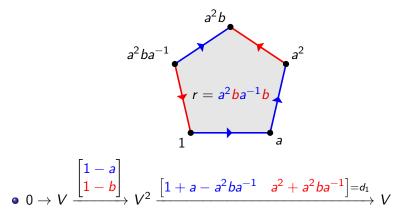
•
$$G = \langle a, b | a^2 b a^{-1} b \rangle$$

• Presentation complex – a 2-skeleton of K(G, 1):



Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus ○○○●	SL₃(ℤ) 00000
Geometri	c interpretation			
• G =	$\langle a, b a^2 b a^{-1} b angle$			

• Presentation complex – a 2-skeleton of K(G, 1):



Spectral gap for the first Laplacian of $SL_3(\mathbb{Z})$

(joint work with M. Kaluba and P. Nowak)

Vanishing, reducibility, (T)

Laplacian spectral gaps

Fox calculus

SL₃(ℤ) 00000

SDP problem for matrix SOS

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) 0●000
SDP pr	oblem for matrix	k SOS		

• When $M \in M_n(\mathbb{R}G)$ is an SOS?

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) ⊙●○○○
SDP prot	olem for matrix	SOS		

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) ⊙●○○○
SDP prot	olem for matrix	SOS		

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) 00000
SDP pro	blem for matrix	< SOS		

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

Lemma

M = SOS iff there exists $P \succeq 0$ such that $M = y^* Py$.

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) 0●000
SDP pr	oblem for matrix	× SOS		
- 14				

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

Lemma

M = SOS iff there exists $P \succeq 0$ such that $M = y^* P y$.

• Convex optimization for $M = \Delta_1 - \lambda I$:

 $\begin{array}{ll} \text{maximize:} & \lambda \\ \text{subject to:} & M_{i,j}(g) = \langle \delta_{i,j} \otimes \delta_g, P \rangle, \\ & P \succeq 0. \end{array}$

Vanishing, reducibility, (T)

Laplacian spectral gaps

Fox calculus

 $\underset{00 \bullet 00}{SL_3(\mathbb{Z})}$

Reducibility of the second cohomology for $SL_3(\mathbb{Z})$

$$SL_{3}(\mathbb{Z}) = \langle \{E_{i,j}\} | [E_{i,j}, E_{i,k}], [E_{i,j}, E_{j,k}] E_{i,k}^{-1}, \\ (E_{1,2}E_{2,1}^{-1}E_{1,2})^{4} \rangle$$

$$SL_{3}(\mathbb{Z}) = \langle \{E_{i,j}\} | [E_{i,j}, E_{i,k}], [E_{i,j}, E_{j,k}] E_{i,k}^{-1}, \\ (E_{1,2}E_{2,1}^{-1}E_{1,2})^{4} \rangle$$

$$SL_{3}(\mathbb{Z}) = \langle \{E_{i,j}\} | [E_{i,j}, E_{i,k}], [E_{i,j}, E_{j,k}] E_{i,k}^{-1}, \\ (E_{1,2}E_{2,1}^{-1}E_{1,2})^{4} \rangle$$

Theorem (Kaluba, M., Nowak)

For $SL_3(\mathbb{Z})$ the expression $\Delta_1 - \lambda I$ is an SOS for any $\lambda \leq 0.32$.

$$SL_{3}(\mathbb{Z}) = \langle \{E_{i,j}\} | [E_{i,j}, E_{i,k}], [E_{i,j}, E_{j,k}] E_{i,k}^{-1}, \\ (E_{1,2}E_{2,1}^{-1}E_{1,2})^{4} \rangle$$

Theorem (Kaluba, M., Nowak)

For $SL_3(\mathbb{Z})$ the expression $\Delta_1 - \lambda I$ is an SOS for any $\lambda \leq 0.32$.

$$SL_{3}(\mathbb{Z}) = \langle \{E_{i,j}\} | [E_{i,j}, E_{i,k}], [E_{i,j}, E_{j,k}] E_{i,k}^{-1}, \\ (E_{1,2}E_{2,1}^{-1}E_{1,2})^{4} \rangle$$

Theorem (Kaluba, M., Nowak)

For $SL_3(\mathbb{Z})$ the expression $\Delta_1 - \lambda I$ is an SOS for any $\lambda \leq 0.32$.

Corollary

The first cohomology of $SL_3(\mathbb{Z})$ vanishes, and the second is reduced.

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) 000●0
A comme	ent on expander	ſS		

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL ₃ (ℤ) 000●0
A comme	ent on expander	S		

Introduction	Vanishing, reducibility, (T)	Laplacian spectral gaps	Fox calculus	SL3(ℤ) 000●0
A comn	nent on expande	ers		

- *G* = (*V*, *E*)
- Cheeger constant: $h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V\setminus A)}{\#A}$

000	Vanishing, reducibility, (1)	OOOO	OOOO	SL3(ℤ) 000€0		
A comment on expanders						

- G = (V, E)
- Cheeger constant: $h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V\setminus A)}{\#A}$
- Expander family: $|G_n| \to \infty$ s.t. $\liminf_{n \to \infty} \frac{h(G_n)}{\deg(G_n)} > 0$

000	00000	Capiacian spectral gaps	0000	SL3(ℤ) 000●0		
A comment on expanders						

- G = (V, E)
- Cheeger constant: $h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V\setminus A)}{\#A}$
- Expander family: $|G_n| \to \infty$ s.t. $\liminf_{n \to \infty} \frac{h(G_n)}{\deg(G_n)} > 0$
- (T) yields expanders: $G_n := G/N_n$, G has (T)

000	00000	0000	0000	SL3(ℤ) 000●0		
A comment on expanders						

- G = (V, E)
- Cheeger constant: $h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V\setminus A)}{\#A}$
- Expander family: $|G_n| \to \infty$ s.t. $\liminf_{n \to \infty} \frac{h(G_n)}{\deg(G_n)} > 0$
- (T) yields expanders: $G_n := G/N_n$, G has (T)
- Expanders generalize to higher dimensions (Lubotzky)

000	vanishing, reducibility, (1)	0000	0000	SL3(ℤ) 000●0		
A comment on expanders						

- G = (V, E)
- Cheeger constant: $h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V\setminus A)}{\#A}$
- Expander family: $|G_n| \to \infty$ s.t. $\liminf_{n \to \infty} \frac{h(G_n)}{\deg(G_n)} > 0$
- (T) yields expanders: $G_n := G/N_n$, G has (T)
- Expanders generalize to higher dimensions (Lubotzky)
- SL₃(\mathbb{Z}): spectral gap \Rightarrow "CW-expanders"

Thank you for attention!