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Finite-dimensional reduction: consider balls in G

Positivity in group rings (sums of squares)

We work with matrices over RG
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Sums of squares (SOS)

∗-involution in RG : ξ∗ =
∑

g∈G ξgg
−1

∗-involution in Mm,n(RG ): (M∗)i ,j = M∗
j ,i

Definition

M ∈ Mn(RG ) is an SOS if there exist M1, . . . ,Ml such that

M = M∗
1M1 + · · ·+M∗

l Ml .

We decide SOS property with convex optimization
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Definition of Fox derivatives

G = ⟨s1, . . . , sn|r1, . . . , rm⟩

Definition (Fox, ’50s)

The differentials ∂
∂sj

: RFn → RG , Fn = ⟨s1, . . . , sn⟩ are defined by:

∂si
∂sj

= δi,j ,
∂s−1

j

∂sj
= −s−1

j , and
∂s±1

i

∂sj
= 0 for i ̸= j

product rule: ∂(uv)
∂sj

= ∂u
∂sj

+ u ∂v
∂sj

.

Definition (Fox, ’50s)

The Fox derivatives are the elements ∂ri
∂sj

∈ RG .
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Sample computations

F2 = ⟨a, b⟩:

∂(aba−1b−1)

∂b
=

∂(ab)

∂b
+ ab

∂(a−1b−1)

∂b

=
∂a

∂b
+ a

∂b

∂b
+ ab

(
∂a−1

∂b
+ a−1∂b

−1

∂b

)
= a− aba−1b−1

Z2 = ⟨a, b|aba−1b−1⟩:

∂(aba−1b−1)

∂b
= a− aba−1b−1 = a− 1
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Computing cohomology

G = ⟨s1, . . . , sn|r1, . . . , rm⟩

d0 =

1− si
...

1− sn


Jacobian: d1 =

[
∂ri
∂sj

]
How to compute H∗(G ,V ), V = G -module?

Theorem (Lyndon, ’50s)

The cohomology H∗(G ,V ) is the cohomology of the following
complex:

0 → V
d0−→ V n d1−→ Vm → · · · .
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Geometric interpretation

G = ⟨a, b|a2ba−1b⟩

Presentation complex – a 2-skeleton of K (G , 1):

a1

a2

a2b

a2ba−1

r = a2ba−1b

0 → V

1− a
1− b


−−−−−−→ V 2

[
1 + a− a2ba−1 a2 + a2ba−1

]
=d1

−−−−−−−−−−−−−−−−−−−−−−−−−−→ V
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Vanishing of cohomology and property (T)

vanishing = vanishing for every unitary representation

Definition

G has Kazhdan’s property (T) if H1(G , π) = 0 for every unitary
representation π of G on a Hilbert space.

(T) ⇔ coninuous affine isometric actions on real Hilbert
spaces have fixed points

Theorem (Ozawa, 2014)

G = ⟨s1, . . . , sn| · · · ⟩ has property (T) iff there exists λ > 0 such
that ∆2

0 − λ∆0 = SOS (∆0 = d∗
0d0 =

∑n
i=1(1− si )

∗(1− si )).
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Reducibility of cohomology

Bader and Nowak, 2020

concerns chain complexes of Hilbert spaces

Suppose H∗ is given by

· · · → Ci−1
di−→ Ci

di+1−−→ Ci+1 → · · ·

Definition

The ith reduced cohomology is defined by H
i
= Ker di/Im di−1.

We say that the ith cohomology is reduced if H i coincides with H
i
.
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Reducibility vs vanishing

reducibility = reducibility for every unitary representation

Obviously, vanishing implies reducibility

The converse holds in dimension one

It does not hold in higher dimensions:

Proposition (Dymara-Januszkiewicz)

For any i ≥ 2 there exists a group Gi with reduced H i and
H i (G , ρ0) ̸= 0 for some unitary representation ρ0.
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Algebraic condition

Suppose we compute cohomology of G from

· · · → (RG )ki−1
di−1−−→ (RG )ki

di−→ (RG )ki+1 → · · ·

∆i = d∗
i di + di−1d

∗
i−1 ∈ Mki (RG )

Theorem (Bader and Nowak, 2020)

TFAE for G and i ≥ 1:

H i vanish and H i+1 are reduced.

∆i − λI = SOS for some λ > 0.
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Results
(joint work with M. Kaluba and P. Nowak)
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SDP problem for matrix SOS

When M ∈ Mn(RG ) is an SOS?

y = In ⊗ x ∈ Mmn,n(RG ), x – column with half-basis for M

Lemma

M = SOS iff there exists P ⪰ 0 such that M = y
∗Py.

Convex optimization for M = ∆1 − λI :

maximize: λ

subject to: Mi ,j(g) = ⟨δi ,j ⊗ δg ,P⟩,
P ⪰ 0.
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Adding relations preserves SOS

G = ⟨S |R⟩

R ′ ⊆ R

Reminder: ∆1 = d∗
1d1 + d0d

∗
0

Lemma

Suppose
∑

r∈R′ r∗r + d0d
∗
0 − λI is an SOS. Then ∆1 − λI is an

SOS as well.

Proof.

Just add
∑

r∈R\R′ r∗r to the expression
∑

r∈R′ r∗r +d0d
∗
0 −λI .
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Reducibility of the second cohomology for SL3(Z)

We use the following presentation of SL3(Z):

SL3(Z) = ⟨{Ei ,j}| · · · , (E1,2E
−1
2,1E1,2)

4⟩

R ′ := {· · · }

Theorem (Kaluba, M., Nowak)

For SL3(Z) the expression ∆1 − λI is an SOS for any λ ≤ 0.32.

Corollary

The first cohomology of SL3(Z) vanishes, and the second is
reduced.



Introduction Fox calculus Vanishing and reducibility of cohomology Results

Reducibility of the second cohomology for SL3(Z)

We use the following presentation of SL3(Z):

SL3(Z) = ⟨{Ei ,j}| · · · , (E1,2E
−1
2,1E1,2)

4⟩

R ′ := {· · · }

Theorem (Kaluba, M., Nowak)

For SL3(Z) the expression ∆1 − λI is an SOS for any λ ≤ 0.32.

Corollary

The first cohomology of SL3(Z) vanishes, and the second is
reduced.



Introduction Fox calculus Vanishing and reducibility of cohomology Results

Reducibility of the second cohomology for SL3(Z)

We use the following presentation of SL3(Z):

SL3(Z) = ⟨{Ei ,j}| · · · , (E1,2E
−1
2,1E1,2)

4⟩

R ′ := {· · · }

Theorem (Kaluba, M., Nowak)

For SL3(Z) the expression ∆1 − λI is an SOS for any λ ≤ 0.32.

Corollary

The first cohomology of SL3(Z) vanishes, and the second is
reduced.



Introduction Fox calculus Vanishing and reducibility of cohomology Results

Reducibility of the second cohomology for SL3(Z)

We use the following presentation of SL3(Z):

SL3(Z) = ⟨{Ei ,j}| · · · , (E1,2E
−1
2,1E1,2)

4⟩

R ′ := {· · · }

Theorem (Kaluba, M., Nowak)

For SL3(Z) the expression ∆1 − λI is an SOS for any λ ≤ 0.32.

Corollary

The first cohomology of SL3(Z) vanishes, and the second is
reduced.



Introduction Fox calculus Vanishing and reducibility of cohomology Results

Reducibility of the second cohomology for SL3(Z)

We use the following presentation of SL3(Z):

SL3(Z) = ⟨{Ei ,j}| · · · , (E1,2E
−1
2,1E1,2)

4⟩

R ′ := {· · · }

Theorem (Kaluba, M., Nowak)

For SL3(Z) the expression ∆1 − λI is an SOS for any λ ≤ 0.32.

Corollary

The first cohomology of SL3(Z) vanishes, and the second is
reduced.



Introduction Fox calculus Vanishing and reducibility of cohomology Results

Reducibility of the second cohomology for SL3(Z)

We use the following presentation of SL3(Z):

SL3(Z) = ⟨{Ei ,j}| · · · , (E1,2E
−1
2,1E1,2)

4⟩

R ′ := {· · · }

Theorem (Kaluba, M., Nowak)

For SL3(Z) the expression ∆1 − λI is an SOS for any λ ≤ 0.32.

Corollary

The first cohomology of SL3(Z) vanishes, and the second is
reduced.



Introduction Fox calculus Vanishing and reducibility of cohomology Results

Reducibility of the second cohomology for SL3(Z)

We use the following presentation of SL3(Z):

SL3(Z) = ⟨{Ei ,j}| · · · , (E1,2E
−1
2,1E1,2)

4⟩

R ′ := {· · · }

Theorem (Kaluba, M., Nowak)

For SL3(Z) the expression ∆1 − λI is an SOS for any λ ≤ 0.32.

Corollary

The first cohomology of SL3(Z) vanishes, and the second is
reduced.



Introduction Fox calculus Vanishing and reducibility of cohomology Results

A comment on expanders

G = (V ,E )

Cheeger constant: h(G ) = inf1≤#A≤#V /2
#E(A,V \A)

#A

Expander family: |Gn| → ∞ s.t. lim infn→∞
h(Gn)

deg(Gn)
> 0

(T) yields expanders: Gn := G/Nn, G has (T)

Expanders generalize to higher dimensions (Lubotzky)

SL3(Z): spectral gap ⇒ ”CW-expanders”
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Thank you for
attention!
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