| troduction | Fox calculus | Vanishing and reducibility of cohomology | Results |
|------------|--------------|------------------------------------------|---------|
| 0000       |              |                                          |         |

## Fox derivatives, group cohomology, and higher property (T)

#### Piotr Mizerka

#### Institute of Mathematics of Polish Academy of Sciences

GABY 2022

Introduction ●○○○○ Fox calculus

Vanishing and reducibility of cohomology  ${\scriptstyle \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc}$ 

Results

# Introduction

| Introduction<br>○●○○○ | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Outline               |              |                                          |         |

| Introduction<br>○●○○○ | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Outline               |              |                                          |         |

• We focus on finitely presented groups

| Introduction<br>○●○○○ | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Outline               |              |                                          |         |

- We focus on finitely presented groups
- Goal: study cohomological conditions generalizing property (T)

| Introduction<br>○●○○○ | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Outline               |              |                                          |         |

- We focus on finitely presented groups
- Goal: study cohomological conditions generalizing property (T)
- Idea: interpretation in a group ring setting

| Introduction<br>○●○○○ | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Outline               |              |                                          |         |

- We focus on finitely presented groups
- Goal: study cohomological conditions generalizing property (T)
- Idea: interpretation in a group ring setting
- Fox calculus

| Introduction<br>○●○○○ | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Outline               |              |                                          |         |

- We focus on finitely presented groups
- Goal: study cohomological conditions generalizing property (T)
- Idea: interpretation in a group ring setting
- Fox calculus
- Vanishing and reducibility of cohomology

| Introduction<br>○●○○○ | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Outline               |              |                                          |         |

- We focus on finitely presented groups
- Goal: study cohomological conditions generalizing property (T)
- Idea: interpretation in a group ring setting
- Fox calculus
- Vanishing and reducibility of cohomology
- Results

| Introduction<br>00●00 | Fox calculus | Van<br>000 | ishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------|---------------------------------------|---------|
|                       |              |            |                                       |         |

### Relations between main concepts

 Introduction
 Fox calculus
 Vanishing and reducibility of cohomology
 Results

 coood
 Relations between main concepts
 coocd

• Fox derivatives define group cohomology



 Introduction
 Fox calculus
 Vanishing and reducibility of cohomology
 Results

 COOD
 Relations
 between main
 concepts
 concepts

• Fox derivatives define group cohomology

• Kazhdan's property (T) is a cohomological property



| Group ring            | approach     |                                          |         |
|-----------------------|--------------|------------------------------------------|---------|
| Introduction<br>○○○●○ | Fox calculus | Vanishing and reducibility of cohomology | Results |

| Group ring a          | approach     |                                          |         |
|-----------------------|--------------|------------------------------------------|---------|
| Introduction<br>000●0 | Fox calculus | Vanishing and reducibility of cohomology | Results |

• We translate cohomological properties to group rings

| Group ring a          | approach     |                                          |         |
|-----------------------|--------------|------------------------------------------|---------|
| Introduction<br>○○○●○ | Fox calculus | Vanishing and reducibility of cohomology | Results |

- We translate cohomological properties to group rings
- The group ring:  $\mathbb{R}G = \{\sum_{g \in G} \lambda_g g | \lambda_g \in \mathbb{R}\}$

| Group ring   | approach     |                                          |         |
|--------------|--------------|------------------------------------------|---------|
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |

- We translate cohomological properties to group rings
- The group ring:  $\mathbb{R}G = \{\sum_{g \in G} \lambda_g g | \lambda_g \in \mathbb{R}\}$
- Finite-dimensional reduction: consider balls in G

| OOO+O         OOOOO         OOOOO         OOOOOO         OOOOOO            | Group rir    | a annroach   |                                          |         |
|----------------------------------------------------------------------------|--------------|--------------|------------------------------------------|---------|
| Introduction Eav calculus Vaniching and reducibility of cohomology Results | Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |

- We translate cohomological properties to group rings
- The group ring:  $\mathbb{R}G = \{\sum_{g \in G} \lambda_g g | \lambda_g \in \mathbb{R}\}$
- Finite-dimensional reduction: consider balls in G
- Positivity in group rings (sums of squares)

| 00000    | 00000       | 00000 | 000000 |
|----------|-------------|-------|--------|
| Group ri | og annroach |       |        |

- We translate cohomological properties to group rings
- The group ring:  $\mathbb{R}G = \{\sum_{g \in G} \lambda_g g | \lambda_g \in \mathbb{R}\}$
- Finite-dimensional reduction: consider balls in G
- Positivity in group rings (sums of squares)
- We work with matrices over  $\mathbb{R}G$

| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |
|--------------|--------------|------------------------------------------|---------|
| 00000        |              |                                          |         |
|              |              |                                          |         |

Sums of squares (SOS)

| Introduction<br>0000● | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Sums of squ           | ares (SOS)   |                                          |         |

• \*-involution in 
$$\mathbb{R}G$$
:  $\xi^* = \sum_{g \in G} \xi_g g^{-1}$ 

| Introduction<br>0000● | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Sums of squ           | ares (SOS)   |                                          |         |

- \*-involution in  $\mathbb{R}G$ :  $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- \*-involution in  $M_{m,n}(\mathbb{R}G)$ :  $(M^*)_{i,j} = M^*_{j,i}$

| Introduction<br>0000● | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Sums of squ           | ares (SOS)   |                                          |         |

- \*-involution in  $\mathbb{R}G$ :  $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- \*-involution in  $M_{m,n}(\mathbb{R}G)$ :  $(M^*)_{i,j} = M^*_{j,i}$

| Introduction<br>○○○○● | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Sums of squ           | ares (SOS)   |                                          |         |

- \*-involution in  $\mathbb{R}G$ :  $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- \*-involution in  $M_{m,n}(\mathbb{R}G)$ :  $(M^*)_{i,j} = M^*_{j,i}$

#### Definition

 $M \in M_n(\mathbb{R}G)$  is an SOS if there exist  $M_1, \ldots, M_l$  such that

$$M=M_1^*M_1+\cdots+M_l^*M_l.$$

| Introduction<br>○○○○● | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Sums of squ           | ares (SOS)   |                                          |         |

- \*-involution in  $\mathbb{R}G$ :  $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- \*-involution in  $M_{m,n}(\mathbb{R}G)$ :  $(M^*)_{i,j} = M^*_{j,i}$

#### Definition

 $M \in M_n(\mathbb{R}G)$  is an SOS if there exist  $M_1, \ldots, M_l$  such that

$$M = M_1^* M_1 + \cdots + M_l^* M_l.$$

#### • We decide SOS property with convex optimization

| Introduction |
|--------------|
| 00000        |

Fox calculus ●○○○○

# Fox calculus

| Definition of | f Fox derivat         | ives                                     |         |
|---------------|-----------------------|------------------------------------------|---------|
| Introduction  | Fox calculus<br>○●○○○ | Vanishing and reducibility of cohomology | Results |

| Definition of         | f Fox derivat         | ives                                     |         |
|-----------------------|-----------------------|------------------------------------------|---------|
| Introduction<br>00000 | Fox calculus<br>○●○○○ | Vanishing and reducibility of cohomology | Results |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

| Definition of         | f Fox derivat         | ives                                     |         |
|-----------------------|-----------------------|------------------------------------------|---------|
| Introduction<br>00000 | Fox calculus<br>o●ooo | Vanishing and reducibility of cohomology | Results |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

| Introduction | Fox calculus<br>○●○○○ | Vanishing and reducibility of cohomology | Results |
|--------------|-----------------------|------------------------------------------|---------|
| Definition o | f Fox dorivati        | ivos                                     |         |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

**Definition (Fox, '50s)** The differentials  $\frac{\partial}{\partial s_j} : \mathbb{R}F_n \to \mathbb{R}G, F_n = \langle s_1, \dots, s_n \rangle$  are defined by:

| Introduction<br>00000 | Fox calculus<br>o●ooo | Vanishing and reducibility of cohomology | Results |
|-----------------------|-----------------------|------------------------------------------|---------|
| Definition o          | f Fox derivat         | ives                                     |         |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

**Definition (Fox, '50s)** The differentials  $\frac{\partial}{\partial s_j} : \mathbb{R}F_n \to \mathbb{R}G$ ,  $F_n = \langle s_1, \dots, s_n \rangle$  are defined by: •  $\frac{\partial s_i}{\partial s_j} = \delta_{i,j}$ ,  $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$ , and  $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$  for  $i \neq j$ 

| Introduction<br>00000 | Fox calculus<br>○●○○○ | Vanishing and reducibility of cohomology | Results |
|-----------------------|-----------------------|------------------------------------------|---------|
| Definition of         | f Fox derivati        | ives                                     |         |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

# **Definition (Fox, '50s)** The differentials $\frac{\partial}{\partial s_j} : \mathbb{R}F_n \to \mathbb{R}G$ , $F_n = \langle s_1, \dots, s_n \rangle$ are defined by: • $\frac{\partial s_i}{\partial s_j} = \delta_{i,j}$ , $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$ , and $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$ for $i \neq j$ • product rule: $\frac{\partial (uv)}{\partial s_j} = \frac{\partial u}{\partial s_j} + u \frac{\partial v}{\partial s_j}$ .

| Introduction<br>00000 | Fox calculus<br>○●○○○ | Vanishing and reducibility of cohomology | Results |
|-----------------------|-----------------------|------------------------------------------|---------|
| Definition of         | f Fox derivati        | ives                                     |         |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

# **Definition (Fox, '50s)** The differentials $\frac{\partial}{\partial s_j} : \mathbb{R}F_n \to \mathbb{R}G$ , $F_n = \langle s_1, \dots, s_n \rangle$ are defined by: • $\frac{\partial s_i}{\partial s_j} = \delta_{i,j}$ , $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$ , and $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$ for $i \neq j$ • product rule: $\frac{\partial (uv)}{\partial s_j} = \frac{\partial u}{\partial s_j} + u \frac{\partial v}{\partial s_j}$ .

| Introduction<br>00000 | Fox calculus<br>○●○○○ | Vanishing and reducibility of cohomology | Results |
|-----------------------|-----------------------|------------------------------------------|---------|
| Definition of         | f Fox derivati        | ives                                     |         |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

## Definition (Fox, '50s)

The differentials  $\frac{\partial}{\partial s_i} : \mathbb{R}F_n \to \mathbb{R}G$ ,  $F_n = \langle s_1, \dots, s_n \rangle$  are defined by:

• 
$$\frac{\partial s_i}{\partial s_j} = \delta_{i,j}$$
,  $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$ , and  $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$  for  $i \neq j$ 

• product rule: 
$$\frac{\partial(uv)}{\partial s_j} = \frac{\partial u}{\partial s_j} + u \frac{\partial v}{\partial s_j}$$

#### Definition (Fox, '50s)

The Fox derivatives are the elements OSI

$$\frac{\partial r_i}{\partial s_i} \in \mathbb{R}G.$$

| Sample con   | mputations            |                                          |         |
|--------------|-----------------------|------------------------------------------|---------|
| Introduction | Fox calculus<br>००●०० | Vanishing and reducibility of cohomology | Results |

| Introduction | Fox calculus<br>○○●○○ | Vanishing and reducibility of cohomology | Results |
|--------------|-----------------------|------------------------------------------|---------|
| Sample com   | putations             |                                          |         |

• 
$$F_2 = \langle a, b \rangle$$
:

| Introduction |   | Fox calculus | 5 | Vanishing and reducibility of<br>00000 | cohomology | Results |
|--------------|---|--------------|---|----------------------------------------|------------|---------|
|              | - |              | - |                                        |            |         |

### Sample computations

• 
$$F_2 = \langle a, b \rangle$$
:

$$\frac{\partial(aba^{-1}b^{-1})}{\partial b} = \frac{\partial(ab)}{\partial b} + ab\frac{\partial(a^{-1}b^{-1})}{\partial b}$$
$$= \frac{\partial a}{\partial b} + a\frac{\partial b}{\partial b} + ab\left(\frac{\partial a^{-1}}{\partial b} + a^{-1}\frac{\partial b^{-1}}{\partial b}\right)$$
$$= a - aba^{-1}b^{-1}$$
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |  |
|--------------|--------------|------------------------------------------|---------|--|
|              | 00000        |                                          |         |  |
| -            |              |                                          |         |  |

# Sample computations

• 
$$F_2 = \langle a, b \rangle$$
:

$$\frac{\partial(aba^{-1}b^{-1})}{\partial b} = \frac{\partial(ab)}{\partial b} + ab\frac{\partial(a^{-1}b^{-1})}{\partial b}$$
$$= \frac{\partial a}{\partial b} + a\frac{\partial b}{\partial b} + ab\left(\frac{\partial a^{-1}}{\partial b} + a^{-1}\frac{\partial b^{-1}}{\partial b}\right)$$
$$= a - aba^{-1}b^{-1}$$

• 
$$\mathbb{Z}^2 = \langle a, b | aba^{-1}b^{-1} \rangle$$
:  
$$\frac{\partial (aba^{-1}b^{-1})}{\partial b} = a - aba^{-1}b^{-1} = a - 1$$

| Computing    | cohomology            |                                          |         |
|--------------|-----------------------|------------------------------------------|---------|
| Introduction | Fox calculus<br>○○○●○ | Vanishing and reducibility of cohomology | Results |

| Computing    | cohomology            |                                          |         |
|--------------|-----------------------|------------------------------------------|---------|
| Introduction | Fox calculus<br>000●0 | Vanishing and reducibility of cohomology | Results |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

| Introduction |  | Fox calculus |  | Vanishing and reducibility of cohomology | Results |
|--------------|--|--------------|--|------------------------------------------|---------|
|              |  | 00000        |  |                                          |         |
| ~            |  |              |  |                                          |         |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

• 
$$d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

| Introduction | Fox calculus | Vanishing and reducibility of cohomology |  |
|--------------|--------------|------------------------------------------|--|
|              | 00000        |                                          |  |
| _            |              |                                          |  |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

• 
$$d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$
  
• Jacobian:  $d_1 = \begin{bmatrix} \frac{\partial r_i}{\partial s_j} \end{bmatrix}$ 

| Introduction |  | Fox calculus |  | Vanishing and reducibility of cohomology | Results |
|--------------|--|--------------|--|------------------------------------------|---------|
|              |  | 00000        |  |                                          |         |
| ~            |  |              |  |                                          |         |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

• 
$$d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$
  
• Jacobian:  $d_1 = \begin{bmatrix} \frac{\partial r_i}{\partial s_j} \end{bmatrix}$ 

• How to compute  $H^*(G, V)$ , V = G-module?

| Introduction |  | Fox calculus |  | Vanishing and reducibility of cohomology | Results |
|--------------|--|--------------|--|------------------------------------------|---------|
|              |  | 00000        |  |                                          |         |
| ~            |  |              |  |                                          |         |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

• 
$$d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$
  
• Jacobian:  $d_1 = \begin{bmatrix} \frac{\partial r_i}{\partial s_j} \end{bmatrix}$ 

• How to compute  $H^*(G, V)$ , V = G-module?

| Introduction |  | Fox calculus |  | Vanishing and reducibility of cohomology | Results |  |
|--------------|--|--------------|--|------------------------------------------|---------|--|
|              |  | 00000        |  |                                          |         |  |
| ~            |  | •            |  |                                          |         |  |

• 
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

• 
$$d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$
  
• Jacobian:  $d_1 = \begin{bmatrix} \frac{\partial r_i}{\partial s_j} \end{bmatrix}$ 

• How to compute  $H^*(G, V)$ , V = G-module?

#### Theorem (Lyndon, '50s)

The cohomology  $H^*(G, V)$  is the cohomology of the following complex:

$$0 \rightarrow V \xrightarrow{d_0} V^n \xrightarrow{d_1} V^m \rightarrow \cdots$$

| Coomotric | interpretat  | tion | 000000 |
|-----------|--------------|------|--------|
| Geometric | : interpreta | tion |        |

| Geometric    | interpreta            | tion                                     |         |
|--------------|-----------------------|------------------------------------------|---------|
| Introduction | Fox calculus<br>○○○○● | Vanishing and reducibility of cohomology | Results |

• 
$$G = \langle a, b | a^2 b a^{-1} b \rangle$$

| Geometric i  | nterpretation         |                                          |         |
|--------------|-----------------------|------------------------------------------|---------|
| Introduction | Fox calculus<br>0000● | Vanishing and reducibility of cohomology | Results |

• 
$$G = \langle a, b | a^2 b a^{-1} b \rangle$$

• Presentation complex – a 2-skeleton of K(G, 1):



| Geometric    | interpretatio         | on                                       |         |
|--------------|-----------------------|------------------------------------------|---------|
| Introduction | Fox calculus<br>0000● | Vanishing and reducibility of cohomology | Results |

• 
$$G = \langle a, b | a^2 b a^{-1} b \rangle$$

• Presentation complex – a 2-skeleton of K(G, 1):



Introduction

Fox calculus

Vanishing and reducibility of cohomology •••••• Results

# Vanishing and reducibility of cohomology

 Introduction
 Fox calculus
 Vanishing and reducibility of cohomology

 00000
 00000
 0●000

Results

## Vanishing of cohomology and property (T)







#### Definition

*G* has Kazhdan's property (T) if  $H^1(G, \pi) = 0$  for every unitary representation  $\pi$  of *G* on a Hilbert space.



#### Definition

*G* has Kazhdan's property (T) if  $H^1(G, \pi) = 0$  for every unitary representation  $\pi$  of *G* on a Hilbert space.

 (T) ⇔ coninuous affine isometric actions on real Hilbert spaces have fixed points



#### Definition

*G* has Kazhdan's property (T) if  $H^1(G, \pi) = 0$  for every unitary representation  $\pi$  of *G* on a Hilbert space.

 (T) ⇔ coninuous affine isometric actions on real Hilbert spaces have fixed points



#### Definition

*G* has Kazhdan's property (T) if  $H^1(G, \pi) = 0$  for every unitary representation  $\pi$  of *G* on a Hilbert space.

 (T) ⇔ coninuous affine isometric actions on real Hilbert spaces have fixed points

Theorem (Ozawa, 2014)

 $G = \langle s_1, \ldots, s_n | \cdots \rangle$  has property (T) iff there exists  $\lambda > 0$  such that  $\Delta_0^2 - \lambda \Delta_0 = \text{SOS} \ (\Delta_0 = d_0^* d_0 = \sum_{i=1}^n (1 - s_i)^* (1 - s_i)).$ 

| Introduction | Fox calculus | Vanishing and reducibility of cohomology |  |
|--------------|--------------|------------------------------------------|--|
|              |              | 00000                                    |  |
|              |              |                                          |  |

## **Reducibility of cohomology**

| Poducibility | of cohomolo  |                                          |         |
|--------------|--------------|------------------------------------------|---------|
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |

• Bader and Nowak, 2020

| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |
|--------------|--------------|------------------------------------------|---------|
| Reducibility | of cohom     | nlogy                                    |         |

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces

| Introduction<br>00000 | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Reducibility          | of cohomolo  | gy                                       |         |

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose  $H^*$  is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

| Introduction<br>00000 | Fox calculus | Vanishing and reducibility of cohomology | Results |
|-----------------------|--------------|------------------------------------------|---------|
| Reducibility          | of cohomolo  | gy                                       |         |

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose  $H^*$  is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

| Introduction<br>00000 | Fox calculus | Vanishing and reducibility of cohomology<br>○○●○○ | Results |
|-----------------------|--------------|---------------------------------------------------|---------|
| Reducibili            | ty of cohom  |                                                   |         |

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose *H*<sup>\*</sup> is given by

$$\cdots \to C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \to \cdots$$

#### Definition

The *i*th reduced cohomology is defined by  $\overline{H}^i = \text{Ker } d_i / \overline{\text{Im } d_{i-1}}$ . We say that the *i*th cohomology is reduced if  $H^i$  coincides with  $\overline{H}^i$ .

| Introduction<br>00000 | Fox calculus | Vanishing and reducibility of cohomology<br>○○○●○ | Results |
|-----------------------|--------------|---------------------------------------------------|---------|
|                       |              |                                                   |         |

## **Reducibility vs vanishing**

| Introduction | Fox calculus | Vanishing and reducibility of cohomology<br>○○○●○ | Results |
|--------------|--------------|---------------------------------------------------|---------|
| Reducibility | vs vanishing |                                                   |         |

 $\bullet$  reducibility = reducibility for every unitary representation

| 00000        |              | 000000 |
|--------------|--------------|--------|
| Reducibility | vs vanishing |        |

- $\bullet$  reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility

| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |
|--------------|--------------|------------------------------------------|---------|
| Reducibility | vs vanishing |                                          |         |

- $\bullet$  reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one

| 00000        | 00000        | 00000 | 000000 |
|--------------|--------------|-------|--------|
| Reducibility | vs vanishing |       |        |

- $\bullet$  reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

| 00000        | 00000        | 00000 | 000000 |
|--------------|--------------|-------|--------|
| Reducibility | vs vanishing |       |        |

- $\bullet$  reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

| 00000                     | 00000 | 00000 | 000000 |  |  |  |  |  |
|---------------------------|-------|-------|--------|--|--|--|--|--|
| Reducibility vs vanishing |       |       |        |  |  |  |  |  |

- $\bullet\ reducibility = reducibility$  for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

#### **Proposition (Dymara-Januszkiewicz)**

For any  $i \ge 2$  there exists a group  $G_i$  with reduced  $H^i$  and  $H^i(G, \rho_0) \ne 0$  for some unitary representation  $\rho_0$ .

| Algebraic condition |              |                                          |         |  |  |  |
|---------------------|--------------|------------------------------------------|---------|--|--|--|
| 00000               | 00000        | 00000                                    | 000000  |  |  |  |
| Introduction        | Fox calculus | Vanishing and reducibility of cohomology | Results |  |  |  |

| Algebraic           | condition | 0000 | 000000 |  |  |  |
|---------------------|-----------|------|--------|--|--|--|
| Algebraic condition |           |      |        |  |  |  |

• Suppose we compute cohomology of  ${\it G}$  from

$$\cdots 
ightarrow (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} 
ightarrow \cdots$$

| 00000               | 00000 | 0000 | 000000 |  |  |  |  |
|---------------------|-------|------|--------|--|--|--|--|
| Algebraic condition |       |      |        |  |  |  |  |

• Suppose we compute cohomology of  ${\it G}$  from

$$\cdots 
ightarrow (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} 
ightarrow \cdots$$

• 
$$\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$
| 00000     | 00000     | 0000 | 000000 |
|-----------|-----------|------|--------|
| Algebraid | condition |      |        |

• Suppose we compute cohomology of  ${\it G}$  from

$$\cdots 
ightarrow (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} 
ightarrow \cdots$$

• 
$$\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

| 00000     | 00000     | 0000 | 000000 |
|-----------|-----------|------|--------|
| Algebraid | condition |      |        |

• Suppose we compute cohomology of G from

$$\cdots 
ightarrow (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} 
ightarrow \cdots$$

• 
$$\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

**Theorem (Bader and Nowak, 2020)** TFAE for G and  $i \ge 1$ :

| 00000     | 00000     | 0000 | 000000 |
|-----------|-----------|------|--------|
| Algebraid | condition |      |        |

• Suppose we compute cohomology of G from

$$\cdots 
ightarrow (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} 
ightarrow \cdots$$

• 
$$\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

**Theorem (Bader and Nowak, 2020)** TFAE for G and  $i \ge 1$ : •  $H^i$  vanish and  $H^{i+1}$  are reduced.

| Introduction | Fox calculus | Vanishing and reducibility of cohomology<br>○○○○● | Results |
|--------------|--------------|---------------------------------------------------|---------|
| Algebraic co | ondition     |                                                   |         |

• Suppose we compute cohomology of G from

$$\cdots 
ightarrow (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} 
ightarrow \cdots$$

• 
$$\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

**Theorem (Bader and Nowak, 2020)**  *TFAE for G and i*  $\geq$  1: • *H<sup>i</sup>* vanish and *H<sup>i+1</sup>* are reduced. •  $\Delta_i - \lambda I =$  SOS for some  $\lambda > 0$ .

# Results

#### (joint work with M. Kaluba and P. Nowak)

 Introduction
 Fox calculus
 Vanishing and reducibility of cohomology

 00000
 00000
 00000

Results ○●○○○○

# **SDP** problem for matrix SOS

| Introduction<br>00000 | Fox calculus | Vanishing and reducibility of cohomology | Results<br>○●○○○○ |
|-----------------------|--------------|------------------------------------------|-------------------|
| SDP probler           | n for matrix | SOS                                      |                   |

• When  $M \in M_n(\mathbb{R}G)$  is an SOS?

| SDP probler  | n for matrix | SOS                                      |                   |
|--------------|--------------|------------------------------------------|-------------------|
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results<br>○●○○○○ |

• When  $M \in M_n(\mathbb{R}G)$  is an SOS?

•  $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$ , x -column with half-basis for M

| SDP probler  | n for matrix | SOS                                      |                   |
|--------------|--------------|------------------------------------------|-------------------|
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results<br>○●○○○○ |

• When  $M \in M_n(\mathbb{R}G)$  is an SOS?

•  $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$ , x -column with half-basis for M

|              | m for motily | SOS                                      |         |
|--------------|--------------|------------------------------------------|---------|
|              |              |                                          | 00000   |
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |

#### SDP problem for matrix SOS

- When  $M \in M_n(\mathbb{R}G)$  is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$ , x column with half-basis for M

#### Lemma

M = SOS iff there exists  $P \succeq 0$  such that  $M = y^* P y$ .

|              | <b>f</b>     | 505                                      |         |
|--------------|--------------|------------------------------------------|---------|
| 00000        | 00000        | 00000                                    | 00000   |
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |

#### SDP problem for matrix SUS

- When  $M \in M_n(\mathbb{R}G)$  is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$ , x -column with half-basis for M

#### Lemma

M = SOS iff there exists  $P \succeq 0$  such that  $M = y^* Py$ .

• Convex optimization for  $M = \Delta_1 - \lambda I$ :

 $\begin{array}{ll} \text{maximize:} & \lambda \\ \text{subject to:} & M_{i,j}(g) = \langle \delta_{i,j} \otimes \delta_g, P \rangle, \\ & P \succeq 0. \end{array}$ 

| 00000       | 00000        | 00000                                    | 000000  |
|-------------|--------------|------------------------------------------|---------|
| ntroduction | Fox calculus | Vanishing and reducibility of cohomology | Results |

| Adding re | plations pres | erves SOS |  |
|-----------|---------------|-----------|--|
| Adding re | elations pres | erves SOS |  |

• 
$$G = \langle S | R \rangle$$

| Adding relat | cions preservo | es SOS                                   |                   |
|--------------|----------------|------------------------------------------|-------------------|
| Introduction | Fox calculus   | Vanishing and reducibility of cohomology | Results<br>00●000 |

# • $G = \langle S | R \rangle$

•  $R' \subseteq R$ 

| 00000        | 00000        | 00000                                    | 000000  |
|--------------|--------------|------------------------------------------|---------|
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |

• 
$$G = \langle S | R \rangle$$

• 
$$R' \subseteq R$$

• Reminder: 
$$\Delta_1 = d_1^* d_1 + d_0 d_0^*$$

| 00000        | 00000        | 00000                                    | 000000  |
|--------------|--------------|------------------------------------------|---------|
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |

• 
$$G = \langle S | R \rangle$$

• 
$$R' \subseteq R$$

• Reminder: 
$$\Delta_1 = d_1^* d_1 + d_0 d_0^*$$

|              | •            | 505                                      |         |
|--------------|--------------|------------------------------------------|---------|
| 00000        | 00000        | 00000                                    | 000000  |
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |

• 
$$G = \langle S | R \rangle$$

• 
$$R' \subseteq R$$

• Reminder: 
$$\Delta_1 = d_1^* d_1 + d_0 d_0^*$$

#### Lemma

Suppose  $\sum_{r \in R'} r^*r + d_0d_0^* - \lambda I$  is an SOS. Then  $\Delta_1 - \lambda I$  is an SOS as well.

|              | I            | 202                                      |         |
|--------------|--------------|------------------------------------------|---------|
| 00000        | 00000        | 00000                                    | 000000  |
| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |

• 
$$G = \langle S | R \rangle$$

• 
$$R' \subseteq R$$

• Reminder: 
$$\Delta_1 = d_1^* d_1 + d_0 d_0^*$$

#### Lemma

Suppose  $\sum_{r \in R'} r^*r + d_0d_0^* - \lambda I$  is an SOS. Then  $\Delta_1 - \lambda I$  is an SOS as well.

#### Proof.

Just add  $\sum_{r \in R \setminus R'} r^* r$  to the expression  $\sum_{r \in R'} r^* r + d_0 d_0^* - \lambda I$ .  $\Box$ 

| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results<br>000●00 |
|--------------|--------------|------------------------------------------|-------------------|
| Reducibility | of the secon | d cohomology for $SL_3(\mathbb{Z})$      | )                 |



$$\mathsf{SL}_3(\mathbb{Z}) = \langle \{E_{i,j}\} | \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$



$$\mathsf{SL}_3(\mathbb{Z}) = \langle \{E_{i,j}\} | \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

•  $R' := \{\cdots\}$ 



$$\mathsf{SL}_3(\mathbb{Z}) = \langle \{E_{i,j}\} | \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

•  $R' := \{\cdots\}$ 



$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\} | \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

•  $R' := \{\cdots\}$ 

**Theorem (Kaluba, M., Nowak)** For SL<sub>3</sub>( $\mathbb{Z}$ ) the expression  $\Delta_1 - \lambda I$  is an SOS for any  $\lambda \leq 0.32$ .



$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\} | \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

•  $R' := \{\cdots\}$ 

**Theorem (Kaluba, M., Nowak)** For SL<sub>3</sub>( $\mathbb{Z}$ ) the expression  $\Delta_1 - \lambda I$  is an SOS for any  $\lambda \leq 0.32$ .



$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\} | \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

•  $R' := \{\cdots\}$ 

Theorem (Kaluba, M., Nowak)

For  $SL_3(\mathbb{Z})$  the expression  $\Delta_1 - \lambda I$  is an SOS for any  $\lambda \leq 0.32$ .

#### Corollary

The first cohomology of  $SL_3(\mathbb{Z})$  vanishes, and the second is reduced.

| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |
|--------------|--------------|------------------------------------------|---------|
|              |              |                                          | 000000  |
|              |              |                                          |         |

| Introduction<br>00000 | Fox calculus | Vanishing and reducibility of cohomology | Results<br>0000●0 |
|-----------------------|--------------|------------------------------------------|-------------------|
|                       | -            | •                                        |                   |

• 
$$G = (V, E)$$

| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results<br>0000●0 |
|--------------|--------------|------------------------------------------|-------------------|
|              |              |                                          |                   |

• Cheeger constant:  $h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V\setminus A)}{\#A}$ 

| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |
|--------------|--------------|------------------------------------------|---------|
|              |              |                                          | 000000  |
|              |              |                                          |         |

• Cheeger constant: 
$$h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V\setminus A)}{\#A}$$

• Expander family: 
$$|G_n| \to \infty$$
 s.t.  $\liminf_{n \to \infty} \frac{h(G_n)}{\deg(G_n)} > 0$ 

| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |
|--------------|--------------|------------------------------------------|---------|
|              |              |                                          | 000000  |
|              |              |                                          |         |

• Cheeger constant: 
$$h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V\setminus A)}{\#A}$$

• Expander family: 
$$|G_n| \to \infty$$
 s.t.  $\liminf_{n \to \infty} \frac{h(G_n)}{\deg(G_n)} > 0$ 

• (T) yields expanders: 
$$G_n := G/N_n$$
, G has (T)

| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |
|--------------|--------------|------------------------------------------|---------|
|              |              |                                          | 000000  |
|              |              |                                          |         |

• Cheeger constant: 
$$h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V\setminus A)}{\#A}$$

• Expander family: 
$$|G_n| \to \infty$$
 s.t.  $\liminf_{n \to \infty} \frac{h(G_n)}{\deg(G_n)} > 0$ 

• (T) yields expanders: 
$$G_n := G/N_n$$
, G has (T)

• Expanders generalize to higher dimensions (Lubotzky)

| Introduction | Fox calculus | Vanishing and reducibility of cohomology | Results |
|--------------|--------------|------------------------------------------|---------|
|              |              |                                          | 000000  |
|              |              |                                          |         |

• Cheeger constant: 
$$h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V\setminus A)}{\#A}$$

• Expander family: 
$$|G_n| \to \infty$$
 s.t.  $\liminf_{n \to \infty} \frac{h(G_n)}{\deg(G_n)} > 0$ 

• (T) yields expanders: 
$$G_n := G/N_n$$
, G has (T)

• Expanders generalize to higher dimensions (Lubotzky)

• 
$$SL_3(\mathbb{Z})$$
: spectral gap  $\Rightarrow$  "CW-expanders"

Introduction

Fox calculus

Vanishing and reducibility of cohomology

Results

# Thank you for attention!