Fox derivatives, group cohomology, and higher property (T)

Piotr Mizerka

Institute of Mathematics of Polish Academy of Sciences

Applied Topology 2022

Introduction

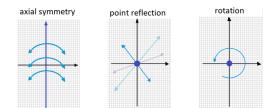
Vanishing and reducibility of cohomology

Introduction

Introduction

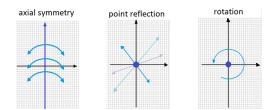
Introduction

000000



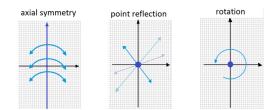
• Generalization: symmetries must have fixed points

Introduction



- Generalization: symmetries must have fixed points
- Property (T) and higher property (T) are related to fixed point properties

Introduction



- Generalization: symmetries must have fixed points
- Property (T) and higher property (T) are related to fixed point properties
- Applications to expanders' constructions

Introduction

About the problem (continued)

• We focus on finitely presented groups

About the problem (continued)

- We focus on finitely presented groups
- Goal: study cohomological conditions generalizing property
 (T)

About the problem (continued)

- We focus on finitely presented groups
- Goal: study cohomological conditions generalizing property
 (T)
- The conditions: vanishing and reducibility of group cohomology

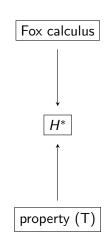
About the problem (continued)

- We focus on finitely presented groups
- Goal: study cohomological conditions generalizing property
 (T)
- The conditions: vanishing and reducibility of group cohomology
- Idea: interpretation in a group ring setting

Relations between main concepts

Relations between main concepts

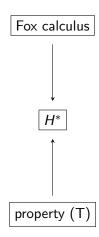
• Fox calculus computes group cohomology



Relations between main concepts

• Fox calculus computes group cohomology

 Kazhdan's property (T) is a cohomological property



Introduction

0000•00

Introduction

0000000

• We translate cohomological properties to group rings

Introduction

- We translate cohomological properties to group rings
- ullet The group ring: $\mathbb{R} G = \{\sum_{g \in G} \lambda_g g | \lambda_g \in \mathbb{R} \}$

Introduction

- We translate cohomological properties to group rings
- ullet The group ring: $\mathbb{R} G = \{\sum_{g \in G} \lambda_g g | \lambda_g \in \mathbb{R} \}$
- Finite-dimensional reduction: consider balls in G

- We translate cohomological properties to group rings
- ullet The group ring: $\mathbb{R} G = \{\sum_{g \in G} \lambda_g g | \lambda_g \in \mathbb{R} \}$
- Finite-dimensional reduction: consider balls in G
- Positivity in group rings (sums of squares)

Introduction

- We translate cohomological properties to group rings
- ullet The group ring: $\mathbb{R} G = \{\sum_{g \in G} \lambda_g g | \lambda_g \in \mathbb{R} \}$
- Finite-dimensional reduction: consider balls in G
- Positivity in group rings (sums of squares)
- We work with matrices over $\mathbb{R}G$

Introduction

00000•0

Introduction

0000000

• *-involution in $\mathbb{R} \mathcal{G}$: $\xi^* = \sum_{g \in \mathcal{G}} \xi_g g^{-1}$

Introduction

- *-involution in $\mathbb{R} G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- ullet *-involution in $M_{m,n}(\mathbb{R} G)$: $(M^*)_{i,j}=M^*_{j,i}$

Introduction

- *-involution in $\mathbb{R} G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- ullet *-involution in $M_{m,n}(\mathbb{R} G)$: $(M^*)_{i,j}=M^*_{j,i}$

- *-involution in $\mathbb{R} G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- *-involution in $M_{m,n}(\mathbb{R}G)$: $(M^*)_{i,j}=M^*_{j,i}$

Definition

 $M \in M_n(\mathbb{R} G)$ is an SOS if there exist M_1, \ldots, M_l such that

$$M = M_1^* M_1 + \cdots + M_I^* M_I.$$

- ullet *-involution in $\mathbb{R} \emph{G}$: $\xi^* = \sum_{g \in \emph{G}} \xi_g g^{-1}$
- ullet *-involution in $M_{m,n}(\mathbb{R} G)$: $(M^*)_{i,j}=M^*_{j,i}$

Definition

 $M \in M_n(\mathbb{R}G)$ is an SOS if there exist M_1, \ldots, M_l such that

$$M=M_1^*M_1+\cdots+M_l^*M_l.$$

• We decide SOS property with convex optimization

Introduction

Introduction

000000

• Fox calculus: the tool to compute group cohomology

Introduction

- Fox calculus: the tool to compute group cohomology
- Vanishing and reducibility of cohomology: topics concerning higher property (T)

Introduction

- Fox calculus: the tool to compute group cohomology
- Vanishing and reducibility of cohomology: topics concerning higher property (T)
- Results

Fox calculus

Results

Definition of Fox derivatives

Introduction

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Definition of Fox derivatives

$$\bullet G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Definition (Fox, '50s)

Introduction

The differentials $\frac{\partial}{\partial s_i}: \mathbb{R}F_n \to \mathbb{R}G$, $F_n = \langle s_1, \dots, s_n \rangle$ are defined by:

Definition of Fox derivatives

• $G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$

Definition (Fox, '50s)

Introduction

The differentials $\frac{\partial}{\partial s_i}: \mathbb{R}F_n \to \mathbb{R}G$, $F_n = \langle s_1, \dots, s_n \rangle$ are defined by:

Vanishing and reducibility of cohomology

•
$$\frac{\partial s_i}{\partial s_j} = \delta_{i,j}$$
, $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$, and $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$ for $i \neq j$

Definition of Fox derivatives

• $G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$

Definition (Fox, '50s)

Introduction

The differentials $\frac{\partial}{\partial s_i}$: $\mathbb{R}F_n \to \mathbb{R}G$, $F_n = \langle s_1, \dots, s_n \rangle$ are defined by:

- $\frac{\partial s_i}{\partial s_i} = \delta_{i,j}$, $\frac{\partial s_i^{-1}}{\partial s_i} = -s_i^{-1}$, and $\frac{\partial s_i^{\pm 1}}{\partial s_i} = 0$ for $i \neq j$
- product rule: $\frac{\partial (uv)}{\partial s_i} = \frac{\partial u}{\partial s_i} + u \frac{\partial v}{\partial s_i}$.

Definition of Fox derivatives

• $G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$

Definition (Fox, '50s)

Introduction

The differentials $\frac{\partial}{\partial s_i}$: $\mathbb{R}F_n \to \mathbb{R}G$, $F_n = \langle s_1, \dots, s_n \rangle$ are defined by:

- $\frac{\partial s_i}{\partial s_i} = \delta_{i,j}$, $\frac{\partial s_i^{-1}}{\partial s_i} = -s_i^{-1}$, and $\frac{\partial s_i^{\pm 1}}{\partial s_i} = 0$ for $i \neq j$
- product rule: $\frac{\partial (uv)}{\partial s_i} = \frac{\partial u}{\partial s_i} + u \frac{\partial v}{\partial s_i}$.

Definition of Fox derivatives

• $G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$

Definition (Fox, '50s)

The differentials $\frac{\partial}{\partial s_i}: \mathbb{R}F_n \to \mathbb{R}G$, $F_n = \langle s_1, \dots, s_n \rangle$ are defined by:

•
$$\frac{\partial s_i}{\partial s_j} = \delta_{i,j}$$
, $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$, and $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$ for $i \neq j$

• product rule: $\frac{\partial (uv)}{\partial s_j} = \frac{\partial u}{\partial s_j} + u \frac{\partial v}{\partial s_j}$.

Definition (Fox, '50s)

The Fox derivatives are the elements $\frac{\partial r_i}{\partial s_i} \in \mathbb{R}G$.

Results

Computing cohomology

Vanishing and reducibility of cohomology

$$\bullet \ G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

$$\bullet G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

$$\bullet \ d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

$$\bullet G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

$$\bullet \ d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

• Jacobian:
$$d_1 = \left[\frac{\partial r_i}{\partial s_j}\right]$$

$$\bullet G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

$$\bullet \ d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

- ullet Jacobian: $d_1 = \left[rac{\partial r_i}{\partial s_j}
 ight]$
- How to compute $H^*(G, V)$, V = G-module?

$$\bullet G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

$$\bullet \ d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

- ullet Jacobian: $d_1 = \left[rac{\partial r_i}{\partial s_j}
 ight]$
- How to compute $H^*(G, V)$, V = G-module?

Vanishing and reducibility of cohomology

Computing cohomology

Introduction

$$\bullet G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

$$\bullet \ d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

- Jacobian: $d_1 = \left[\frac{\partial r_i}{\partial s_i}\right]$
- How to compute $H^*(G, V)$, V = G-module?

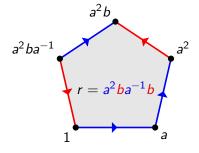
Theorem (Lyndon, '50s)

The cohomology $H^*(G, V)$ is the cohomology of the following complex:

$$0 \to V \xrightarrow{d_0} V^n \xrightarrow{d_1} V^m \to \cdots$$

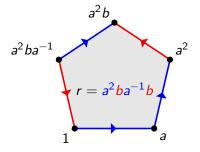
•
$$G = \langle a, b | a^2ba^{-1}b \rangle$$

- $\bullet \ G = \langle a, b | a^2 b a^{-1} b \rangle$
- Presentation complex a 2-skeleton of K(G, 1):



•
$$G = \langle a, b | a^2ba^{-1}b \rangle$$

• Presentation complex – a 2-skeleton of K(G, 1):



$$\bullet \ 0 \to V \xrightarrow{\begin{bmatrix} 1-a \\ 1-b \end{bmatrix}} V^2 \xrightarrow{\begin{bmatrix} 1+a-a^2ba^{-1} & a^2+a^2ba^{-1} \end{bmatrix} = d_1} V$$

Vanishing and reducibility of cohomology

00000

Vanishing and reducibility of cohomology

• vanishing = vanishing for every unitary representation

• vanishing = vanishing for every unitary representation

vanishing = vanishing for every unitary representation

Definition

G has Kazhdan's property (T) if $H^1(G,\pi)=0$ for every unitary representation π of G on a Hilbert space.

• vanishing = vanishing for every unitary representation

Definition

G has Kazhdan's property (T) if $H^1(G,\pi)=0$ for every unitary representation π of G on a Hilbert space.

 (T) ⇔ coninuous affine isometric actions on real Hilbert spaces have fixed points

• vanishing = vanishing for every unitary representation

Definition

G has Kazhdan's property (T) if $H^1(G,\pi)=0$ for every unitary representation π of G on a Hilbert space.

 (T) ⇔ coninuous affine isometric actions on real Hilbert spaces have fixed points

• vanishing = vanishing for every unitary representation

Definition

G has Kazhdan's property (T) if $H^1(G,\pi)=0$ for every unitary representation π of G on a Hilbert space.

 (T) ⇔ coninuous affine isometric actions on real Hilbert spaces have fixed points

Theorem (Ozawa, 2014)

 $G = \langle s_1, \ldots, s_n | \cdots \rangle$ has property (T) iff there exists $\lambda > 0$ such that $\Delta_0^2 - \lambda \Delta_0 = SOS$ ($\Delta_0 = d_0^* d_0 = \sum_{i=1}^n (1 - s_i)^* (1 - s_i)$).

Bader and Nowak, 2020

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces

Results

Reducibility of cohomology

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose H^* is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

Results

Reducibility of cohomology

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose H^* is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

- Bader and Nowak, 2020
- concerns chain complexes of Hilbert spaces
- Suppose *H** is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

Definition

The *i*th reduced cohomology is defined by $\overline{H}^i = \operatorname{Ker} d_i / \overline{\operatorname{Im} d_{i-1}}$. We say that the *i*th cohomology is reduced if H^i coincides with \overline{H}^i .

• reducibility = reducibility for every unitary representation

- $\bullet \ \ reducibility = reducibility \ for \ every \ unitary \ representation$
- Obviously, vanishing implies reducibility

- ullet reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one

- reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

- reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

- reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

Proposition (Dymara-Januszkiewicz)

For any $i \ge 2$ there exists a group G_i with reduced H^i and $H^i(G, \rho_0) \ne 0$ for some unitary representation ρ_0 .

Algebraic condition

• Suppose we compute cohomology of *G* from

$$\cdots \to (\mathbb{R} G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R} G)^{k_i} \xrightarrow{d_i} (\mathbb{R} G)^{k_{i+1}} \to \cdots$$

• Suppose we compute cohomology of *G* from

$$\cdots \to (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} \to \cdots$$

$$\bullet \ \Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

• Suppose we compute cohomology of *G* from

$$\cdots \to (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} \to \cdots$$

$$\bullet \ \Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

• Suppose we compute cohomology of *G* from

$$\cdots \to (\mathbb{R} G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R} G)^{k_i} \xrightarrow{d_i} (\mathbb{R} G)^{k_{i+1}} \to \cdots$$

 $\bullet \ \Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$

Theorem (Bader and Nowak, 2020)

TFAE for G and $i \ge 1$:

• Suppose we compute cohomology of G from

$$\cdots \to (\mathbb{R} G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R} G)^{k_i} \xrightarrow{d_i} (\mathbb{R} G)^{k_{i+1}} \to \cdots$$

 $\bullet \ \Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$

Theorem (Bader and Nowak, 2020)

TFAE for G and $i \ge 1$:

• H^i vanish and H^{i+1} are reduced.

Results

Algebraic condition

Suppose we compute cohomology of G from

$$\cdots \to (\mathbb{R} G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R} G)^{k_i} \xrightarrow{d_i} (\mathbb{R} G)^{k_{i+1}} \to \cdots$$

• $\Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$

Theorem (Bader and Nowak, 2020)

TFAE for G and i > 1:

- H^i vanish and H^{i+1} are reduced.
- $\Delta_i \lambda I = SOS$ for some $\lambda > 0$.

Introduction

Results

(joint work with M. Kaluba and P. Nowak)

• When $M \in M_n(\mathbb{R}G)$ is an SOS?

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

Lemma

M = SOS iff there exists $P \succeq 0$ such that $M = y^*Py$.

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

Lemma

M = SOS iff there exists $P \succeq 0$ such that $M = y^*Py$.

• Convex optimization for $M = \Delta_1 - \lambda I$:

maximize: λ

subject to: $M_{i,j}(g) = \langle \delta_{i,j} \otimes \delta_g, P \rangle,$

 $P \succeq 0$.

Results

Reducibility of the second cohomology for $SL_3(\mathbb{Z})$

Reducibility of the second cohomology for $SL_3(\mathbb{Z})$

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\} | [E_{i,j}, E_{i,k}], [E_{i,j}, E_{j,k}] E_{i,k}^{-1}, (E_{1,2} E_{2,1}^{-1} E_{1,2})^4 \rangle$$

Reducibility of the second cohomology for $SL_3(\mathbb{Z})$

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\} | [E_{i,j}, E_{i,k}], [E_{i,j}, E_{j,k}] E_{i,k}^{-1}, (E_{1,2} E_{2,1}^{-1} E_{1,2})^4 \rangle$$

Introduction

Reducibility of the second cohomology for $SL_3(\mathbb{Z})$

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\} | [E_{i,j}, E_{i,k}], [E_{i,j}, E_{j,k}] E_{i,k}^{-1},$$
$$(E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

Theorem (Kaluba, M., Nowak)

For $SL_3(\mathbb{Z})$ the expression $\Delta_1 - \lambda I$ is an SOS for any $\lambda \leq 0.32$.

Introduction

Reducibility of the second cohomology for $SL_3(\mathbb{Z})$

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\} | [E_{i,j}, E_{i,k}], [E_{i,j}, E_{j,k}] E_{i,k}^{-1},$$
$$(E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

Theorem (Kaluba, M., Nowak)

For $SL_3(\mathbb{Z})$ the expression $\Delta_1 - \lambda I$ is an SOS for any $\lambda \leq 0.32$.

Reducibility of the second cohomology for $SL_3(\mathbb{Z})$

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_{3}(\mathbb{Z}) = \langle \{E_{i,j}\} | [E_{i,j}, E_{i,k}], [E_{i,j}, E_{j,k}] E_{i,k}^{-1}, (E_{1,2}E_{2,1}^{-1}E_{1,2})^{4} \rangle$$

Theorem (Kaluba, M., Nowak)

For $SL_3(\mathbb{Z})$ the expression $\Delta_1 - \lambda I$ is an SOS for any $\lambda \leq 0.32$.

Corollary

The first cohomology of $SL_3(\mathbb{Z})$ vanishes, and the second is reduced.

•
$$G = (V, E)$$

•
$$G = (V, E)$$

• Cheeger constant:
$$h(G) = \inf_{1 \le \#A \le \#V/2} \frac{\#E(A,V \setminus A)}{\#A}$$

• G = (V, E)

- Cheeger constant: $h(G) = \inf_{1 < \#A < \#V/2} \frac{\#E(A, V \setminus A)}{\#A}$
- Expander family: $|G_n| \to \infty$ s.t. $\liminf_{n \to \infty} \frac{h(G_n)}{\deg(G_n)} > 0$

• G = (V, E)

- Cheeger constant: $h(G) = \inf_{1 < \#A < \#V/2} \frac{\#E(A,V \setminus A)}{\#A}$
- Expander family: $|G_n| \to \infty$ s.t. $\liminf_{n \to \infty} \frac{h(G_n)}{\operatorname{deg}(G_n)} > 0$
- (T) yields expanders: $G_n := G/N_n$, G has (T)

• G = (V, E)

- Cheeger constant: $h(G) = \inf_{1 < \#A < \#V/2} \frac{\#E(A,V \setminus A)}{\#A}$
- Expander family: $|G_n| \to \infty$ s.t. $\liminf_{n \to \infty} \frac{h(G_n)}{\operatorname{der}(G_n)} > 0$
- (T) yields expanders: $G_n := G/N_n$, G has (T)
- Expanders generalize to higher dimensions (Lubotzky)

• G = (V, E)

- Cheeger constant: $h(G) = \inf_{1 < \#A < \#V/2} \frac{\#E(A,V \setminus A)}{\#A}$
- Expander family: $|G_n| \to \infty$ s.t. $\liminf_{n \to \infty} \frac{h(G_n)}{\operatorname{deg}(G_n)} > 0$
- (T) yields expanders: $G_n := G/N_n$, G has (T)
- Expanders generalize to higher dimensions (Lubotzky)
- $SL_3(\mathbb{Z})$: spectral gap \Rightarrow "CW-expanders"

Introduction

Thank you for attention!

Vanishing and reducibility of cohomology