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About the problem

axial symmetry point reflection rotation

@ Generalization: symmetries must have fixed points

@ Property (T) and higher property (T) are related to fixed
point properties

@ Applications to expanders' constructions
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About the problem (continued)

@ We focus on finitely presented groups

@ Goal: study cohomological conditions generalizing property

(T)

@ The conditions: vanishing and reducibility of group
cohomology

@ ldea: interpretation in a group ring setting
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Relations between main concepts

Fox calculus

@ Fox calculus computes group
cohomology

e Kazhdan's property (T) is a
cohomological property

property (T)
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Group ring approach

We translate cohomological properties to group rings

The group ring: RG = {3, A\gg|\g € R}

@ Finite-dimensional reduction: consider balls in G

Positivity in group rings (sums of squares)

We work with matrices over RG
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Sums of squares (SOS)

@ x-involution in RG: £ = decfgg_l

@ x-involution in My, o(RG): (M*);; = M},

J?I

Definition
M € Mp(RG) is an SOS if there exist My, ..., M, such that

M= MMy + -+ M M.

@ We decide SOS property with convex optimization
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@ Fox calculus: the tool to compute group cohomology

@ Vanishing and reducibility of cohomology: topics concerning
higher property (T)

@ Results
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Fox calculus
oe00

Definition of Fox derivatives

@ G=(s1,...,Sn|ry.-\rm)

Definition (Fox, '50s)
The differentials 8% :RF, = RG, F, = (s1,...,s,) are defined by:

=il
s _ s 95
06—5;—6,,1, 55 = sj - —Ofor/;zéj

a(uv)
Os;

ov
o product rule: asj +u Uy

Definition (Fox, '50s)

The Fox derivatives are the elements % € RG.
gl
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Computing cohomology

@ G={(s1,...,Sp|n,...,rm)
1—5,'

Od():
1-—s5s,

@ Jacobian: di = {%]
J
@ How to compute H*(G, V), V = G-module?

Theorem (Lyndon, '50s)

The cohomology H*(G, V') is the cohomology of the following
complex:

0= V& v &y ym_,
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Vanishing of cohomology and property (T)

@ vanishing = vanishing for every unitary representation

Definition

G has Kazhdan's property (T) if H(G, ) = 0 for every unitary
representation 7 of G on a Hilbert space.

@ (T) < coninuous affine isometric actions on real Hilbert
spaces have fixed points
Theorem (Ozawa, 2014)

G = (s1,...,5p|--) has property (T) iff there exists A > 0 such
that A% — XA = SOS (Ao = dgdo = 27:1(1 = S,‘)*(l = S,')).
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Reducibility of cohomology

@ Bader and Nowak, 2020
@ concerns chain complexes of Hilbert spaces

@ Suppose H* is given by
: d;
o= Gy i> G — C,'_|_1 —
Definition

The ith reduced cohomology is defined by Fi = Kerd;/Imd;_;. '
We say that the ith cohomology is reduced if H' coincides with H' .
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Reducibility vs vanishing

reducibility = reducibility for every unitary representation

Obviously, vanishing implies reducibility

The converse holds in dimension one

It does not hold in higher dimensions:

Proposition (Dymara-Januszkiewicz)

For any i > 2 there exists a group G; with reduced H' and
H'(G, po) # O for some unitary representation py.
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Algebraic condition

@ Suppose we compute cohomology of G from
RN (RG)kFI d"*1> (RG)kI i> (RG)kiJrl ...
o A, = d,*d, + d,'_ld;k_l S Mkl.(RG)

Theorem (Bader and Nowak, 2020)
TFAE for G and i > 1:

o H' vanish and H'* are reduced.

o A; — X\l =SOS for some \ > 0.




Results

(joint work with M. Kaluba and P. Nowak)
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SDP problem for matrix SOS

@ When M € M,(RG) is an SOS?

0y =Ily®x € Mnpn(RG), x - column with half-basis for M

Lemma
M = SOS iff there exists P = 0 such that M = y*Py. J

@ Convex optimization for M = A1 — Al:

maximize: A
subject to: M;i(g) = (dij ® dg, P),
P >0.
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Reducibility of the second cohomology for SL3(7Z)

@ We use the following presentation of SL3(Z):

SLs(z) = ({EijHIEis Eikl, [Eijs Bkl Eik
(E1,2E2,1 E1,2) >

Theorem (Kaluba, M., Nowak)
For SL3(Z) the expression A1 — Al is an SOS for any A < 0.32.

Corollary

The first cohomology of SL3(Z) vanishes, and the second is
reduced.
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A comment on expanders

e G=(V,E)

@ Cheeger constant: h(G) = inficuacsuy)o w

Expander family: |G,| — oo s.t. liminf,_ % >0

(T) yields expanders: G, := G/N,, G has (T)

@ Expanders generalize to higher dimensions (Lubotzky)

SL3(Z): spectral gap = " CW-expanders”



Thank you for
attention!
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